225 research outputs found

    Enhancement of Superconductivity in Disordered Films by Parallel Magnetic Field

    Full text link
    We show that the superconducting transition temperature T_c(H) of a very thin highly disordered film with strong spin-orbital scattering can be increased by parallel magnetic field H. This effect is due to polarization of magnetic impurity spins which reduces the full exchange scattering rate of electrons; the largest effect is predicted for spin-1/2 impurities. Moreover, for some range of magnetic impurity concentrations the phenomenon of {\it superconductivity induced by magnetic field} is predicted: superconducting transition temperature T_c(H) is found to be nonzero in the range of magnetic fields 0<H<=H<=Hc0 < H^* <= H <= H_c.Comment: 4 pages, 2 figure

    Hall Transport in Granular Metals and Effects of Coulomb Interactions

    Full text link
    We present a theory of Hall effect in granular systems at large tunneling conductance gT1g_{T}\gg 1. Hall transport is essentially determined by the intragrain electron dynamics, which, as we find using the Kubo formula and diagrammatic technique, can be described by nonzero diffusion modes inside the grains. We show that in the absence of Coulomb interaction the Hall resistivity ρxy\rho_{xy} depends neither on the tunneling conductance nor on the intragrain disorder and is given by the classical formula ρxy=H/(nec)\rho_{xy}=H/(n^* e c), where nn^* differs from the carrier density nn inside the grains by a numerical coefficient determined by the shape of the grains and type of granular lattice. Further, we study the effects of Coulomb interactions by calculating first-order in 1/gT1/g_T corrections and find that (i) in a wide range of temperatures T \gtrsim \Ga exceeding the tunneling escape rate \Ga, the Hall resistivity ρxy\rho_{xy} and conductivity \sig_{xy} acquire logarithmic in TT corrections, which are of local origin and absent in homogeneously disordered metals; (ii) large-scale ``Altshuler-Aronov'' correction to \sig_{xy}, relevant at T\ll\Ga, vanishes in agreement with the theory of homogeneously disordered metals.Comment: 29 pages, 16 figure

    Bose-Einstein condensation of quasiparticles in graphene

    Full text link
    The collective properties of different quasiparticles in various graphene based structures in high magnetic field have been studied. We predict Bose-Einstein condensation (BEC) and superfluidity of 2D spatially indirect magnetoexcitons in two-layer graphene. The superfluid density and the temperature of the Kosterlitz-Thouless phase transition are shown to be increasing functions of the excitonic density but decreasing functions of magnetic field and the interlayer separation. The instability of the ground state of the interacting 2D indirect magnetoexcitons in a slab of superlattice with alternating electron and hole graphene layers (GLs) is established. The stable system of indirect 2D magnetobiexcitons, consisting of pair of indirect excitons with opposite dipole moments, is considered in graphene superlattice. The superfluid density and the temperature of the Kosterlitz-Thouless phase transition for magnetobiexcitons in graphene superlattice are obtained. Besides, the BEC of excitonic polaritons in GL embedded in a semiconductor microcavity in high magnetic field is predicted. While superfluid phase in this magnetoexciton polariton system is absent due to vanishing of magnetoexciton-magnetoexciton interaction in a single layer in the limit of high magnetic field, the critical temperature of BEC formation is calculated. The essential property of magnetoexcitonic systems based on graphene (in contrast, e.g., to a quantum well) is stronger influence of magnetic field and weaker influence of disorder. Observation of the BEC and superfluidity of 2D quasiparticles in graphene in high magnetic field would be interesting confirmation of the phenomena we have described.Comment: 13 pages, 5 figure

    Excitonic condensation in a double-layer graphene system

    Full text link
    The possibility of excitonic condensation in a recently proposed electrically biased double-layer graphene system is studied theoretically. The main emphasis is put on obtaining a reliable analytical estimate for the transition temperature into the excitonic state. As in a double-layer graphene system the total number of fermionic "flavors" is equal to N=8 due to two projections of spin, two valleys, and two layers, the large-NN approximation appears to be especially suitable for theoretical investigation of the system. On the other hand, the large number of flavors makes screening of the bare Coulomb interactions very efficient, which, together with the suppression of backscattering in graphene, leads to an extremely low energy of the excitonic condensation. It is shown that the effect of screening on the excitonic pairing is just as strong in the excitonic state as it is in the normal state. As a result, the value of the excitonic gap \De is found to be in full agreement with the previously obtained estimate for the mean-field transition temperature TcT_c, the maximum possible value Δmax,Tcmax107ϵF\Delta^{\rm max},T_c^{\rm max}\sim 10^{-7} \epsilon_F (ϵF\epsilon_F is the Fermi energy) of both being in 1mK 1{\rm mK} range for a perfectly clean system. This proves that the energy scale 107ϵF\sim 10^{-7} \epsilon_F really sets the upper bound for the transition temperature and invalidates the recently expressed conjecture about the high-temperature first-order transition into the excitonic state. These findings suggest that, unfortunately, the excitonic condensation in graphene double-layers can hardly be realized experimentally.Comment: 21 pages, 5 figures, invited paper to Graphene special issue in Semiconductor Science and Technolog

    Excitonic condensation in a double-layer graphene system

    Full text link
    The possibility of excitonic condensation in a recently proposed electrically biased double-layer graphene system is studied theoretically. The main emphasis is put on obtaining a reliable analytical estimate for the transition temperature into the excitonic state. As in a double-layer graphene system the total number of fermionic "flavors" is equal to N=8 due to two projections of spin, two valleys, and two layers, the large-NN approximation appears to be especially suitable for theoretical investigation of the system. On the other hand, the large number of flavors makes screening of the bare Coulomb interactions very efficient, which, together with the suppression of backscattering in graphene, leads to an extremely low energy of the excitonic condensation. It is shown that the effect of screening on the excitonic pairing is just as strong in the excitonic state as it is in the normal state. As a result, the value of the excitonic gap \De is found to be in full agreement with the previously obtained estimate for the mean-field transition temperature TcT_c, the maximum possible value Δmax,Tcmax107ϵF\Delta^{\rm max},T_c^{\rm max}\sim 10^{-7} \epsilon_F (ϵF\epsilon_F is the Fermi energy) of both being in 1mK 1{\rm mK} range for a perfectly clean system. This proves that the energy scale 107ϵF\sim 10^{-7} \epsilon_F really sets the upper bound for the transition temperature and invalidates the recently expressed conjecture about the high-temperature first-order transition into the excitonic state. These findings suggest that, unfortunately, the excitonic condensation in graphene double-layers can hardly be realized experimentally.Comment: 21 pages, 5 figures, invited paper to Graphene special issue in Semiconductor Science and Technolog

    Excitonic condensation in a double-layer graphene system

    Full text link
    The possibility of excitonic condensation in a recently proposed electrically biased double-layer graphene system is studied theoretically. The main emphasis is put on obtaining a reliable analytical estimate for the transition temperature into the excitonic state. As in a double-layer graphene system the total number of fermionic "flavors" is equal to N=8 due to two projections of spin, two valleys, and two layers, the large-NN approximation appears to be especially suitable for theoretical investigation of the system. On the other hand, the large number of flavors makes screening of the bare Coulomb interactions very efficient, which, together with the suppression of backscattering in graphene, leads to an extremely low energy of the excitonic condensation. It is shown that the effect of screening on the excitonic pairing is just as strong in the excitonic state as it is in the normal state. As a result, the value of the excitonic gap \De is found to be in full agreement with the previously obtained estimate for the mean-field transition temperature TcT_c, the maximum possible value Δmax,Tcmax107ϵF\Delta^{\rm max},T_c^{\rm max}\sim 10^{-7} \epsilon_F (ϵF\epsilon_F is the Fermi energy) of both being in 1mK 1{\rm mK} range for a perfectly clean system. This proves that the energy scale 107ϵF\sim 10^{-7} \epsilon_F really sets the upper bound for the transition temperature and invalidates the recently expressed conjecture about the high-temperature first-order transition into the excitonic state. These findings suggest that, unfortunately, the excitonic condensation in graphene double-layers can hardly be realized experimentally.Comment: 21 pages, 5 figures, invited paper to Graphene special issue in Semiconductor Science and Technolog

    Subexponential estimations in Shirshov's height theorem (in English)

    Full text link
    In 1993 E. I. Zelmanov asked the following question in Dniester Notebook: "Suppose that F_{2, m} is a 2-generated associative ring with the identity x^m=0. Is it true, that the nilpotency degree of F_{2, m} has exponential growth?" We show that the nilpotency degree of l-generated associative algebra with the identity x^d=0 is smaller than Psi(d,d,l), where Psi(n,d,l)=2^{18} l (nd)^{3 log_3 (nd)+13}d^2. We give the definitive answer to E. I. Zelmanov by this result. It is the consequence of one fact, which is based on combinatorics of words. Let l, n and d>n be positive integers. Then all the words over alphabet of cardinality l which length is greater than Psi(n,d,l) are either n-divided or contain d-th power of subword, where a word W is n-divided, if it can be represented in the following form W=W_0 W_1...W_n such that W_1 >' W_2>'...>'W_n. The symbol >' means lexicographical order here. A. I. Shirshov proved that the set of non n-divided words over alphabet of cardinality l has bounded height h over the set Y consisting of all the words of degree <n. Original Shirshov's estimation was just recursive, in 1982 double exponent was obtained by A.G.Kolotov and in 1993 A.Ya.Belov obtained exponential estimation. We show, that h<Phi(n,l), where Phi(n,l) = 2^{87} n^{12 log_3 n + 48} l. Our proof uses Latyshev idea of Dilworth theorem application.Comment: 21 pages, Russian version of the article is located at the link arXiv:1101.4909; Sbornik: Mathematics, 203:4 (2012), 534 -- 55

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6×10146\times10^{14} cm2^{-2}, yielding the value 1.2(1)×10151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let

    Neutron lifetime measurements using gravitationally trapped ultracold neutrons

    Full text link
    Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.Comment: 38 pages, 19 figures,changed conten
    corecore