2,026 research outputs found

    A solute gradient in the tear meniscus I. A hypothesis to explain Marx's line

    Get PDF
    Marx's line is a line of mucosal staining behind the mucocutaneous junction. It can be demonstrated throughout life in all normal lids by staining with lissamine green and related dyes. Of all the body orifices, only the mucosae of the eye and mouth are directly exposed to the atmosphere. In this paper, we suggest that for the eye, this exposure leads to the formation of Marx's line. The tear meniscus thins progressively toward its apex, where it is pinned at the mucocutaneous junction of the lid. It also thins toward the black line, which segregates the meniscus from the tear film after the blink. We predict that, because of the geometry of the tear meniscus, evaporation generates a solute gradient across the meniscus profile in the anteroposterior plane, which peaks at the meniscus apices at the end of the interblink. One outcome would be to amplify the level of tear molarity at these sites so that they reach hyperosmolar proportions. Preliminary mathematical modeling suggests that dilution of this effect by advection and diffusion of solute away from the meniscus apex at the mucocutaneous junction will be restricted by spatial constraints, the presence of tear and surface mucins at this site, and limited fluid flow. We conclude that evaporative water loss from the tear meniscus may result in a physiological zone of hyperosmolar and related stresses to the occlusal conjunctiva, directly behind the mucocutaneous junction. We hypothesize that this stimulates a high epithelial cell turnover at this site, incomplete epithelial maturation, and a failure to express key molecules such as MUC 16 and galectin-3, which, with the tight junctions between surface epithelial cells, are necessary to seal the ocular surface and prevent penetration of dyes and other molecules into the epithelium. This is proposed as the basis for Marx's line. In Part II of this paper (also published in this issue of The Ocular Surface), we address additional pathophysiological consequences of this mechanism, affecting lid margins

    Random-energy model in random fields

    Full text link
    The random-energy model is studied in the presence of random fields. The problem is solved exactly both in the microcanonical ensemble, without recourse to the replica method, and in the canonical ensemble using the replica formalism. The phase diagrams for bimodal and Gaussian random fields are investigated in detail. In contrast to the Gaussian case, the bimodal random field may lead to a tricritical point and a first-order transition. An interesting feature of the phase diagram is the possibility of a first-order transition from paramagnetic to mixed phase.Comment: 18 pages, 5 figures (included

    Spectral-Function Sum Rules in Supersymmetry Breaking Models

    Full text link
    The technique of Weinberg's spectral-function sum rule is a powerful tool for a study of models in which global symmetry is dynamically broken. It enables us to convert information on the short-distance behavior of a theory to relations among physical quantities which appear in the low-energy picture of the theory. We apply such technique to general supersymmetry breaking models to derive new sum rules.Comment: 18 pages, 1 figur

    Relationships between a roller and a dynamic pressure distribution in circular hydraulic jumps

    Full text link
    We investigated numerically the relation between a roller and the pressure distribution to clarify the dynamics of the roller in circular hydraulic jumps. We found that a roller which characterizes a type II jump is associated with two high pressure regions after the jump, while a type I jump (without the roller) is associated with only one high pressure region. Our numerical results show that building up an appropriate pressure field is essential for a roller.Comment: 10 pages, 7 PS files. To appear in PR

    187^{187}Re(\gamm,n) cross section close to and above the neutron threshold

    Full text link
    The neutron capture cross section of the unstable nucleus 186^{186}Re is studied by investigating the inverse photodisintegration reaction 187^{187}Re(γ\gamma,n). The special interest of the {\it s}-process branching point 186^{186}Re is related to the question of possible {\it s}-process contributions to the abundance of the {\it r}-process chronometer nucleus ^{187}Re.Weusethephotoactivationtechniquetomeasurephotodisintegrationrates.Ourexperimentalresultsareingoodagreementwithtwodifferentstatisticalmodelcalculations.AlthoughthecrosssectionspredictedbybothmodelsfortheinversereactionRe. We use the photoactivation technique to measure photodisintegration rates. Our experimental results are in good agreement with two different statistical model calculations. Although the cross sections predicted by both models for the inverse reaction ^{186}Re(n,Re(n,\gamma)istoolowtoremovetheoverproductionof) is too low to remove the overproduction of ^{186}$Os; the two predicted neutron-capture cross sections differ by a factor of 2.4; this calls for future theoretical study.Comment: Phys. Rev. C, in pres

    Susceptibility Amplitude Ratios Near a Lifshitz Point

    Full text link
    The susceptibility amplitude ratio in the neighborhood of a uniaxial Lifshitz point is calculated at one-loop level using field-theoretic and ϵL\epsilon_{L}-expansion methods. We use the Schwinger parametrization of the propagator in order to split the quadratic and quartic part of the momenta, as well as a new special symmetry point suitable for renormalization purposes. For a cubic lattice (d = 3), we find the result C+C−=3.85\frac{C_{+}}{C_{-}} = 3.85.Comment: 7 pages, late

    Specific heat amplitude ratios for anisotropic Lifshitz critical behaviors

    Full text link
    We determine the specific heat amplitude ratio near a mm-axial Lifshitz point and show its universal character. Using a recent renormalization group picture along with new field-theoretical ϵL\epsilon_{L}-expansion techniques, we established this amplitude ratio at one-loop order. We estimate the numerical value of this amplitude ratio for m=1m=1 and d=3d=3. The result is in very good agreement with its experimental measurement on the magnetic material MnPMnP. It is shown that in the limit m→0m \to 0 it trivially reduces to the Ising-like amplitude ratio.Comment: 8 pages, RevTex, accepted as a Brief Report in Physical Review

    An Upsilon Point in a Spin Model

    Full text link
    We present analytic evidence for the occurrence of an upsilon point, an infinite checkerboard structure of modulated phases, in the ground state of a spin model. The structure of the upsilon point is studied by calculating interface--interface interactions using an expansion in inverse spin anisotropy.Comment: 18 pages ReVTeX file, including 6 figures encoded with uufile
    • …
    corecore