454 research outputs found

    Suboptimal quantum-error-correcting procedure based on semidefinite programming

    Get PDF
    In this paper, we consider a simplified error-correcting problem: for a fixed encoding process, to find a cascade connected quantum channel such that the worst fidelity between the input and the output becomes maximum. With the use of the one-to-one parametrization of quantum channels, a procedure finding a suboptimal error-correcting channel based on a semidefinite programming is proposed. The effectiveness of our method is verified by an example of the bit-flip channel decoding.Comment: 6 pages, no figure, Some notations differ from those in the PRA versio

    Rigorous derivation of coherent resonant tunneling time and velocity in finite periodic systems

    Full text link
    The velocity vresv_{res} of resonant tunneling electrons in finite periodic structures is analytically calculated in two ways. The first method is based on the fact that a transmission of unity leads to a coincidence of all still competing tunneling time definitions. Thus, having an indisputable resonant tunneling time Ď„res,\tau_{res}, we apply the natural definition vres=L/Ď„resv_{res}=L/\tau_{res} to calculate the velocity. For the second method we combine Bloch's theorem with the transfer matrix approach to decompose the wave function into two Bloch waves. Then the expectation value of the velocity is calculated. Both different approaches lead to the same result, showing their physical equivalence. The obtained resonant tunneling velocity vresv_{res} is smaller or equal to the group velocity times the magnitude of the complex transmission amplitude of the unit cell. Only at energies where the unit cell of the periodic structure has a transmission of unity vresv_{res} equals the group velocity. Numerical calculations for a GaAs/AlGaAs superlattice are performed. For typical parameters the resonant velocity is below one third of the group velocity.Comment: 12 pages, 3 figures, LaTe

    Surface-plasmon-polariton wave propagation guided by a metal slab in a sculptured nematic thin film

    Full text link
    Surface-plasmon-polariton~(SPP) wave propagation guided by a metal slab in a periodically nonhomogeneous sculptured nematic thin film~(SNTF) was studied theoretically. The morphologically significant planes of the SNTF on both sides of the metal slab could either be aligned or twisted with respect to each other. The canonical boundary-value problem was formulated, solved for SPP-wave propagation, and examined to determine the effect of slab thickness on the multiplicity and the spatial profiles of SPP waves. Decrease in slab thickness was found to result in more intense coupling of two metal/SNTF interfaces. But when the metal slab becomes thicker, the coupling between the two interfaces reduces and SPP waves localize to one of the two interfaces. The greater the coupling between the two metal/SNTF interfaces, the smaller is the phase speed.Comment: 17 page

    Lagrangian Framework for Systems Composed of High-Loss and Lossless Components

    Full text link
    Using a Lagrangian mechanics approach, we construct a framework to study the dissipative properties of systems composed of two components one of which is highly lossy and the other is lossless. We have shown in our previous work that for such a composite system the modes split into two distinct classes, high-loss and low-loss, according to their dissipative behavior. A principal result of this paper is that for any such dissipative Lagrangian system, with losses accounted by a Rayleigh dissipative function, a rather universal phenomenon occurs, namely, selective overdamping: The high-loss modes are all overdamped, i.e., non-oscillatory, as are an equal number of low-loss modes, but the rest of the low-loss modes remain oscillatory each with an extremely high quality factor that actually increases as the loss of the lossy component increases. We prove this result using a new time dynamical characterization of overdamping in terms of a virial theorem for dissipative systems and the breaking of an equipartition of energy.Comment: 53 pages, 1 figure; Revision of our original manuscript to incorporate suggestions from refere

    Central factorials under the Kontorovich-Lebedev transform of polynomials

    Full text link
    We show that slight modifications of the Kontorovich-Lebedev transform lead to an automorphism of the vector space of polynomials. This circumstance along with the Mellin transformation property of the modified Bessel functions perform the passage of monomials to central factorial polynomials. A special attention is driven to the polynomial sequences whose KL-transform is the canonical sequence, which will be fully characterized. Finally, new identities between the central factorials and the Euler polynomials are found.Comment: also available at http://cmup.fc.up.pt/cmup/ since the 2nd August 201

    Modes of Oscillation in Radiofrequency Paul Traps

    Full text link
    We examine the time-dependent dynamics of ion crystals in radiofrequency traps. The problem of stable trapping of general three-dimensional crystals is considered and the validity of the pseudopotential approximation is discussed. We derive analytically the micromotion amplitude of the ions, rigorously proving well-known experimental observations. We use a method of infinite determinants to find the modes which diagonalize the linearized time-dependent dynamical problem. This allows obtaining explicitly the ('Floquet-Lyapunov') transformation to coordinates of decoupled linear oscillators. We demonstrate the utility of the method by analyzing the modes of a small `peculiar' crystal in a linear Paul trap. The calculations can be readily generalized to multispecies ion crystals in general multipole traps, and time-dependent quantum wavefunctions of ion oscillations in such traps can be obtained.Comment: 24 pages, 3 figures, v2 adds citations and small correction

    An efficient algorithm for computing the Baker-Campbell-Hausdorff series and some of its applications

    Get PDF
    We provide a new algorithm for generating the Baker--Campbell--Hausdorff (BCH) series Z = \log(\e^X \e^Y) in an arbitrary generalized Hall basis of the free Lie algebra L(X,Y)\mathcal{L}(X,Y) generated by XX and YY. It is based on the close relationship of L(X,Y)\mathcal{L}(X,Y) with a Lie algebraic structure of labeled rooted trees. With this algorithm, the computation of the BCH series up to degree 20 (111013 independent elements in L(X,Y)\mathcal{L}(X,Y)) takes less than 15 minutes on a personal computer and requires 1.5 GBytes of memory. We also address the issue of the convergence of the series, providing an optimal convergence domain when XX and YY are real or complex matrices.Comment: 30 page

    Phase Splitting for Periodic Lie Systems

    Full text link
    In the context of the Floquet theory, using a variation of parameter argument, we show that the logarithm of the monodromy of a real periodic Lie system with appropriate properties admits a splitting into two parts, called dynamic and geometric phases. The dynamic phase is intrinsic and linked to the Hamiltonian of a periodic linear Euler system on the co-algebra. The geometric phase is represented as a surface integral of the symplectic form of a co-adjoint orbit.Comment: (v1) 15 pages. (v2) 16 pages. Some typos corrected. References and further comments added. Final version to appear in J. Phys. A

    Scar functions in the Bunimovich Stadium billiard

    Full text link
    In the context of the semiclassical theory of short periodic orbits, scar functions play a crucial role. These wavefunctions live in the neighbourhood of the trajectories, resembling the hyperbolic structure of the phase space in their immediate vicinity. This property makes them extremely suitable for investigating chaotic eigenfunctions. On the other hand, for all practical purposes reductions to Poincare sections become essential. Here we give a detailed explanation of resonances and scar functions construction in the Bunimovich stadium billiard and the corresponding reduction to the boundary. Moreover, we develop a method that takes into account the departure of the unstable and stable manifolds from the linear regime. This new feature extends the validity of the expressions.Comment: 21 pages, 10 figure

    Multi-transmission-line-beam interactive system

    Full text link
    We construct here a Lagrangian field formulation for a system consisting of an electron beam interacting with a slow-wave structure modeled by a possibly non-uniform multiple transmission line (MTL). In the case of a single line we recover the linear model of a traveling wave tube (TWT) due to J.R. Pierce. Since a properly chosen MTL can approximate a real waveguide structure with any desired accuracy, the proposed model can be used in particular for design optimization. Furthermore, the Lagrangian formulation provides for: (i) a clear identification of the mathematical source of amplification, (ii) exact expressions for the conserved energy and its flux distributions obtained from the Noether theorem. In the case of uniform MTLs we carry out an exhaustive analysis of eigenmodes and find sharp conditions on the parameters of the system to provide for amplifying regimes
    • …
    corecore