454 research outputs found
Suboptimal quantum-error-correcting procedure based on semidefinite programming
In this paper, we consider a simplified error-correcting problem: for a fixed
encoding process, to find a cascade connected quantum channel such that the
worst fidelity between the input and the output becomes maximum. With the use
of the one-to-one parametrization of quantum channels, a procedure finding a
suboptimal error-correcting channel based on a semidefinite programming is
proposed. The effectiveness of our method is verified by an example of the
bit-flip channel decoding.Comment: 6 pages, no figure, Some notations differ from those in the PRA
versio
Rigorous derivation of coherent resonant tunneling time and velocity in finite periodic systems
The velocity of resonant tunneling electrons in finite periodic
structures is analytically calculated in two ways. The first method is based on
the fact that a transmission of unity leads to a coincidence of all still
competing tunneling time definitions. Thus, having an indisputable resonant
tunneling time we apply the natural definition
to calculate the velocity. For the second method we
combine Bloch's theorem with the transfer matrix approach to decompose the wave
function into two Bloch waves. Then the expectation value of the velocity is
calculated. Both different approaches lead to the same result, showing their
physical equivalence. The obtained resonant tunneling velocity is
smaller or equal to the group velocity times the magnitude of the complex
transmission amplitude of the unit cell. Only at energies where the unit cell
of the periodic structure has a transmission of unity equals the
group velocity. Numerical calculations for a GaAs/AlGaAs superlattice are
performed. For typical parameters the resonant velocity is below one third of
the group velocity.Comment: 12 pages, 3 figures, LaTe
Surface-plasmon-polariton wave propagation guided by a metal slab in a sculptured nematic thin film
Surface-plasmon-polariton~(SPP) wave propagation guided by a metal slab in a
periodically nonhomogeneous sculptured nematic thin film~(SNTF) was studied
theoretically. The morphologically significant planes of the SNTF on both sides
of the metal slab could either be aligned or twisted with respect to each
other. The canonical boundary-value problem was formulated, solved for SPP-wave
propagation, and examined to determine the effect of slab thickness on the
multiplicity and the spatial profiles of SPP waves. Decrease in slab thickness
was found to result in more intense coupling of two metal/SNTF interfaces. But
when the metal slab becomes thicker, the coupling between the two interfaces
reduces and SPP waves localize to one of the two interfaces. The greater the
coupling between the two metal/SNTF interfaces, the smaller is the phase speed.Comment: 17 page
Lagrangian Framework for Systems Composed of High-Loss and Lossless Components
Using a Lagrangian mechanics approach, we construct a framework to study the
dissipative properties of systems composed of two components one of which is
highly lossy and the other is lossless. We have shown in our previous work that
for such a composite system the modes split into two distinct classes,
high-loss and low-loss, according to their dissipative behavior. A principal
result of this paper is that for any such dissipative Lagrangian system, with
losses accounted by a Rayleigh dissipative function, a rather universal
phenomenon occurs, namely, selective overdamping: The high-loss modes are all
overdamped, i.e., non-oscillatory, as are an equal number of low-loss modes,
but the rest of the low-loss modes remain oscillatory each with an extremely
high quality factor that actually increases as the loss of the lossy component
increases. We prove this result using a new time dynamical characterization of
overdamping in terms of a virial theorem for dissipative systems and the
breaking of an equipartition of energy.Comment: 53 pages, 1 figure; Revision of our original manuscript to
incorporate suggestions from refere
Central factorials under the Kontorovich-Lebedev transform of polynomials
We show that slight modifications of the Kontorovich-Lebedev transform lead
to an automorphism of the vector space of polynomials. This circumstance along
with the Mellin transformation property of the modified Bessel functions
perform the passage of monomials to central factorial polynomials. A special
attention is driven to the polynomial sequences whose KL-transform is the
canonical sequence, which will be fully characterized. Finally, new identities
between the central factorials and the Euler polynomials are found.Comment: also available at http://cmup.fc.up.pt/cmup/ since the 2nd August
201
Modes of Oscillation in Radiofrequency Paul Traps
We examine the time-dependent dynamics of ion crystals in radiofrequency
traps. The problem of stable trapping of general three-dimensional crystals is
considered and the validity of the pseudopotential approximation is discussed.
We derive analytically the micromotion amplitude of the ions, rigorously
proving well-known experimental observations. We use a method of infinite
determinants to find the modes which diagonalize the linearized time-dependent
dynamical problem. This allows obtaining explicitly the ('Floquet-Lyapunov')
transformation to coordinates of decoupled linear oscillators. We demonstrate
the utility of the method by analyzing the modes of a small `peculiar' crystal
in a linear Paul trap. The calculations can be readily generalized to
multispecies ion crystals in general multipole traps, and time-dependent
quantum wavefunctions of ion oscillations in such traps can be obtained.Comment: 24 pages, 3 figures, v2 adds citations and small correction
An efficient algorithm for computing the Baker-Campbell-Hausdorff series and some of its applications
We provide a new algorithm for generating the Baker--Campbell--Hausdorff
(BCH) series Z = \log(\e^X \e^Y) in an arbitrary generalized Hall basis of
the free Lie algebra generated by and . It is based
on the close relationship of with a Lie algebraic structure
of labeled rooted trees. With this algorithm, the computation of the BCH series
up to degree 20 (111013 independent elements in ) takes less
than 15 minutes on a personal computer and requires 1.5 GBytes of memory. We
also address the issue of the convergence of the series, providing an optimal
convergence domain when and are real or complex matrices.Comment: 30 page
Phase Splitting for Periodic Lie Systems
In the context of the Floquet theory, using a variation of parameter
argument, we show that the logarithm of the monodromy of a real periodic Lie
system with appropriate properties admits a splitting into two parts, called
dynamic and geometric phases. The dynamic phase is intrinsic and linked to the
Hamiltonian of a periodic linear Euler system on the co-algebra. The geometric
phase is represented as a surface integral of the symplectic form of a
co-adjoint orbit.Comment: (v1) 15 pages. (v2) 16 pages. Some typos corrected. References and
further comments added. Final version to appear in J. Phys. A
Scar functions in the Bunimovich Stadium billiard
In the context of the semiclassical theory of short periodic orbits, scar
functions play a crucial role. These wavefunctions live in the neighbourhood of
the trajectories, resembling the hyperbolic structure of the phase space in
their immediate vicinity. This property makes them extremely suitable for
investigating chaotic eigenfunctions. On the other hand, for all practical
purposes reductions to Poincare sections become essential. Here we give a
detailed explanation of resonances and scar functions construction in the
Bunimovich stadium billiard and the corresponding reduction to the boundary.
Moreover, we develop a method that takes into account the departure of the
unstable and stable manifolds from the linear regime. This new feature extends
the validity of the expressions.Comment: 21 pages, 10 figure
Multi-transmission-line-beam interactive system
We construct here a Lagrangian field formulation for a system consisting of
an electron beam interacting with a slow-wave structure modeled by a possibly
non-uniform multiple transmission line (MTL). In the case of a single line we
recover the linear model of a traveling wave tube (TWT) due to J.R. Pierce.
Since a properly chosen MTL can approximate a real waveguide structure with any
desired accuracy, the proposed model can be used in particular for design
optimization. Furthermore, the Lagrangian formulation provides for: (i) a clear
identification of the mathematical source of amplification, (ii) exact
expressions for the conserved energy and its flux distributions obtained from
the Noether theorem. In the case of uniform MTLs we carry out an exhaustive
analysis of eigenmodes and find sharp conditions on the parameters of the
system to provide for amplifying regimes
- …