14 research outputs found
Polarization radiation of vortex electrons with large orbital angular momentum
Vortex electrons—freely propagating electrons whose wave functions have helical wave fronts—could become a novel tool in the physics of electromagnetic radiation. They carry a nonzero intrinsic orbital angular momentum (OAM) ℓ with respect to the propagation axis and, for ℓ≫1, a large OAM-induced magnetic moment μ≈ℓμB (μB is the Bohr magneton), which influences the radiation of electromagnetic waves. Here, we consider in detail the OAM-induced effects caused by such electrons in two forms of polarization radiation, namely, in Cherenkov radiation and transition radiation. Thanks to the large ℓ, we can neglect quantum or spin-induced effects, which are of the order of ℏω/Ee≪1, but retain the magnetic moment contribution ℓℏω/Ee≲1, which makes the quasiclassical approach to polarization radiation applicable. We discuss the magnetic moment contribution to polarization radiation, which has never been experimentally observed, and study how its visibility depends on the kinematical parameters and the medium permittivity. In particular, it is shown that this contribution can, in principle, be detected in azimuthally nonsymmetrical problems, for example when vortex electrons obliquely cross a metallic screen (transition radiation) or move near it (diffraction radiation). We predict a left-right angular asymmetry of the transition radiation (in the plane where the charge radiation distributions would stay symmetric), which appears due to an effective interference between the charge radiation field and the magnetic moment contribution. Numerical values of this asymmetry for vortex electrons with Ee=300 keV and ℓ=100–1000 are 0.1%–1%, and we argue that this effect could be detected with existing technology. The finite conductivity of the target and frequency dispersion play crucial roles in these predictions