314 research outputs found

    Excitonic pairing between nodal fermions

    Get PDF
    We study excitonic pairing in nodal fermion systems characterized by a vanishing quasiparticle density of states at the pointlike Fermi surface and a concomitant lack of screening for long-range interactions. By solving the gap equation for the excitonic order parameter, we obtain a critical value of the interaction strength for a variety of power-law interactions and densities of states. We compute the free energy and analyze possible phase transitions, thus shedding further light on the unusual pairing properties of this peculiar class of strongly correlated systems.Comment: 9 pages, 7 figures, minor revisions made, final versio

    Spin dynamics of the quasi two dimensional spin-1/2 quantum magnet Cs_2CuCl_4

    Full text link
    We study dynamical properties of the anisotropic triangular quantum antiferromagnet Cs_2CuCl_4. Inelastic neutron scattering measurements have established that the dynamical spin correlations cannot be understood within a linear spin wave analysis. We go beyond linear spin wave theory by taking interactions between magnons into account in a 1/S expansion. We determine the dynamical structure factor and carry out extensive comparisons with experimental data. We find that compared to linear spin wave theory a significant fraction of the scattering intensity is shifted to higher energies and strong scattering continua are present. However, the 1/S expansion fails to account for the experimentally observed large quantum renormalization of the exchange energies.Comment: 13 pages, 11 figures, higher quality figures can be obtained from the author

    Ground states of a frustrated spin-1/2 antifferomagnet: Cs_2CuCl_4 in a magnetic field

    Full text link
    We present detailed calculations of the magnetic ground state properties of Cs2_2CuCl4_4 in an applied magnetic field, and compare our results with recent experiments. The material is described by a spin Hamiltonian, determined with precision in high field measurements, in which the main interaction is antiferromagnetic Heisenberg exchange between neighboring spins on an anisotropic triangular lattice. An additional, weak Dzyaloshinkii-Moriya interaction introduces easy-plane anisotropy, so that behavior is different for transverse and longitudinal field directions. We determine the phase diagram as a function of field strength for both field directions at zero temperature, using a classical approximation as a first step. Building on this, we calculate the effect of quantum fluctuations on the ordering wavevector and components of the ordered moments, using both linear spinwave theory and a mapping to a Bose gas which gives exact results when the magnetization is almost saturated. Many aspects of the experimental data are well accounted for by this approach.Comment: 13 Pages, 9 Figure

    Commensurate and incommensurate ground states of Cs_2CuCl_4 in a magnetic field

    Full text link
    We present calculations of the magnetic ground state of Cs_2CuCl_4 in an applied magnetic field, with the aim of understanding the commensurately ordered state that has been discovered in recent experiments. This layered material is a realization of a Heisenberg antiferromagnet on an anisotropic triangular lattice. Its behavior in a magnetic field depends on field orientation, because of weak Dzyaloshinskii-Moriya interactions.We study the system by mapping the spin-1/2 Heisenberg Hamiltonian onto a Bose gas with hard core repulsion. This Bose gas is dilute, and calculations are controlled, close to the saturation field. We find a zero-temperature transition between incommensurate and commensurate phases as longitudinal field strength is varied, but only incommensurate order in a transverse field. Results for both field orientations are consistent with experiment.Comment: 5 Pages, 3 Figure

    Quasiparticles in the 111 state and its compressible ancestors

    Full text link
    We investigate the relationship of the spontaneously inter-layer coherent ``111''state of quantum Hall bilayers at total filling factor \nu=1 to ``mutual'' composite fermions, in which vortices in one layer are bound to electrons in the other. Pairing of the mutual composite fermions leads to the low-energy properties of the 111 state, as we explicitly demonstrate using field-theoretic techniques. Interpreting this relationship as a mechanism for inter-layer coherence leads naturally to two candidate states with non-quantized Hall conductance: the mutual composite Fermi liquid, and an inter-layer coherent charge e Wigner crystal. The experimental behavior of the interlayer tunneling conductance and resistivity tensors are discussed for these states.Comment: 4 Pages, RevTe

    Spin Precession and Oscillations in Mesoscopic Systems

    Full text link
    We compare and contrast magneto-transport oscillations in the fully quantum (single-electron coherent) and classical limits for a simple but illustrative model. In particular, we study the induced magnetization and spin current in a two-terminal double-barrier structure with an applied Zeeman field between the barriers and spin disequilibrium in the contacts. Classically, the spin current shows strong tunneling resonances due to spin precession in the region between the two barriers. However, these oscillations are distinguishable from those in the fully coherent case, for which a proper treatment of the electron phase is required. We explain the differences in terms of the presence or absence of coherent multiple wave reflections.Comment: 9 pages, 5 figure

    Weak Ferromagnetism and Excitonic Condensates

    Full text link
    We investigate a model of excitonic ordering (i.e electron-hole pair condensation) appropriate for the divalent hexaborides. We show that the inclusion of imperfectly nested electron hole Fermi surfaces can lead to the formation of an undoped excitonic metal phase. In addition, we find that weak ferromagnetism with compensated moments arises as a result of gapless excitations. We study the effect of the low lying excitations on the density of states, Fermi surface topology and optical conductivity and compare to available experimental data.Comment: 10 Pages, 8 Figures, RevTe

    SO(5) theory of insulating vortex cores in high-TcT_c materials

    Full text link
    We study the fermionic states of the antiferromagnetically ordered vortex cores predicted to exist in the superconducting phase of the newly proposed SO(5) model of strongly correlated electrons. Our model calculation gives a natural explanation of the recent STM measurements on BSCCO, which in surprising contrast to YBCO revealed completely insulating vortex cores.Comment: 4 pages, 1 figur

    Order by disorder and spiral spin liquid in frustrated diamond lattice antiferromagnets

    Get PDF
    Frustration refers to competition between different interactions that cannot be simultaneously satisfied, a familiar feature in many magnetic solids. Strong frustration results in highly degenerate ground states, and a large suppression of ordering by fluctuations. Key challenges in frustrated magnetism are characterizing the fluctuating spin-liquid regime and determining the mechanism of eventual order at lower temperature. Here, we study a model of a diamond lattice antiferromagnet appropriate for numerous spinel materials. With sufficiently strong frustration a massive ground state degeneracy develops amongst spirals whose propagation wavevectors reside on a continuous two-dimensional ``spiral surface'' in momentum space. We argue that an important ordering mechanism is entropic splitting of the degenerate ground states, an elusive phenomena called order-by-disorder. A broad ``spiral spin-liquid'' regime emerges at higher temperatures, where the underlying spiral surface can be directly revealed via spin correlations. We discuss the agreement between these predictions and the well characterized spinel MnSc2S4
    • …
    corecore