215 research outputs found

    On Top of the Alveolar Epithelium: Surfactant and the Glycocalyx

    Get PDF
    Gas exchange in the lung takes place via the air-blood barrier in the septal walls of alveoli. The tissue elements that oxygen molecules have to cross are the alveolar epithelium, the interstitium and the capillary endothelium. The epithelium that lines the alveolar surface is covered by a thin and continuous liquid lining layer. Pulmonary surfactant acts at this air-liquid interface. By virtue of its biophysical and immunomodulatory functions, surfactant keeps alveoli open, dry and clean. What needs to be added to this picture is the glycocalyx of the alveolar epithelium. Here, we briefly review what is known about this glycocalyx and how it can be visualized using electron microscopy. The application of colloidal thorium dioxide as a staining agent reveals differences in the staining pattern between type I and type II alveolar epithelial cells and shows close associations of the glycocalyx with intraalveolar surfactant subtypes such as tubular myelin. These morphological findings indicate that specific spatial interactions between components of the surfactant system and those of the alveolar epithelial glycocalyx exist which may contribute to the maintenance of alveolar homeostasis, in particular to alveolar micromechanics, to the functional integrity of the air-blood barrier, to the regulation of the thickness and viscosity of the alveolar lining layer, and to the defence against inhaled pathogens. Exploring the alveolar epithelial glycocalyx in conjunction with the surfactant system opens novel physiological perspectives of potential clinical relevance for future research

    European Respiratory Society Statement on Long COVID-19 Follow-Up

    Get PDF
    Patients diagnosed with COVID-19 associated with SARS-CoV-2 infection frequently experience symptom burden post-acute infection or post-hospitalisation. We aim to identify optimal strategies for follow-up care that may positively impact the patient's quality-of-life (QOL).A European Respiratory Society (ERS) Task Force (TF) convened and prioritised eight clinical questions. A targeted search of the literature defined the time line of long COVID-19 as one to six months post infection and identified clinical evidence in the follow-up of patients. Studies meeting the inclusion criteria report an association of characteristics of acute infection with persistent symptoms, thromboembolic events in the follow-up period and evaluations of pulmonary physiology and imaging. Importantly, this statement reviews QOL consequences, symptom burden, disability and home care follow-up. Overall, the evidence for follow-up care for patients with long COVID-19 is limited

    Mobilisation of critically ill patients receiving norepinephrine: a retrospective cohort study

    Get PDF
    Background: Mobilisation and exercise intervention in general are safe and feasible in critically ill patients. For patients requiring catecholamines, however, doses of norepinephrine safe for mobilisation in the intensive care unit (ICU) are not defined. This study aimed to describe mobilisation practice in our hospital and identify doses of norepinephrine that allowed a safe mobilisation. Methods: We conducted a retrospective single-centre cohort study of 16 ICUs at a university hospital in Germany with patients admitted between March 2018 and November 2021. Data were collected from our patient data management system. We analysed the effect of norepinephrine on level (ICU Mobility Scale) and frequency (units per day) of mobilisation, early mobilisation (within 72 h of ICU admission), mortality, and rate of adverse events. Data were extracted from free-text mobilisation entries using supervised machine learning (support vector machine). Statistical analyses were done using (generalised) linear (mixed-effect) models, as well as chi-square tests and ANOVAs. Results: A total of 12,462 patients were analysed in this study. They received a total of 59,415 mobilisation units. Of these patients, 842 (6.8%) received mobilisation under continuous norepinephrine administration. Norepinephrine administration was negatively associated with the frequency of mobilisation (adjusted difference -0.07 mobilisations per day; 95% CI - 0.09, - 0.05; p 0.1). Higher compared to lower doses of norepinephrine did not lead to a significant increase in adverse events in our practice (p > 0.1). We identified that mobilisation was safe with up to 0.20 mu g/kg/min norepinephrine for out-of-bed (IMS >= 2) and 0.33 mu g/kg/min for in-bed (IMS 0-1) mobilisation. Conclusions: Mobilisation with norepinephrine can be done safely when considering the status of the patient and safety guidelines. We demonstrated that safe mobilisation was possible with norepinephrine doses up to 0.20 mu g/kg/min for out-of-bed (IMS >= 2) and 0.33 mu g/kg/min for in-bed (IMS 0-1) mobilisation

    A semi-synthetic oligosaccharide conjugate vaccine candidate confers protection against Streptococcus pneumoniae serotype 3 infection

    Get PDF
    The identification of immunogenic glycotopes that render glycoconjugate vaccines protective is key to improving vaccine efficacy. Synthetic oligosaccharides are an attractive alternative to the heterogeneous preparations of purified polysaccharides that most marketed glycoconjugate vaccines are based on. To investigate the potency of semi-synthetic glycoconjugates, we chose the least-efficient serotype in the current pneumococcal conjugate vaccine Prevnar 13, Streptococcus pneumoniae serotype 3 (ST3). Glycan arrays containing synthetic ST3 repeating unit oligosaccharides were used to screen a human reference serum for antibodies and to define the recognition site of two ST3-specific protective monoclonal antibodies. The glycan array screens identified a tetrasaccharide that was selected for in-depth immunological evaluation. The tetrasaccharide-CRM197 carrier protein conjugate elicited protective immunity as evidenced by opsonophagocytosis assays and protection against pneumonia caused by ST3 in mice. Formulation of the defined protective lead candidate glycotope has to be further evaluated to elicit optimal long-term immunity

    A semisynthetic glycoconjugate provides expanded cross-serotype protection against Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae (S. pneumoniae) infections are the leading cause of child mortality globally. Current vaccines fail to induce a protective immune response towards a conserved part of the pathogen, resulting in new serotypes causing disease. Therefore, new vaccine strategies are urgently needed. Described is a two-pronged approach combining S. pneumoniae proteins, pneumolysin (Ply) and pneumococcal surface protein A (PspA), with a precisely defined synthetic oligosaccharide, whereby the carrier protein acts as a serotype-independent antigen to provide additional protection. Proof of concept in mice and swine models revealed that the conjugates inhibited colonization of the nasopharynx, decreased the bacterial load and reduced disease severity in the bacteria challenge model. Immunization of piglets provided the first evidence for the immunogenicity and protective potential of synthetic glycoconjugate vaccine in a large animal model. A combination of synthetic oligosaccharides with proteins from the target pathogen opens the path to create broadly cross-protective (“universal”) pneumococcal vaccines

    Unmet needs in pneumonia research: a comprehensive approach by the CAPNETZ study group

    Get PDF
    INTRODUCTION: Despite improvements in medical science and public health, mortality of community-acquired pneumonia (CAP) has barely changed throughout the last 15 years. The current SARS-CoV-2 pandemic has once again highlighted the central importance of acute respiratory infections to human health. The “network of excellence on Community Acquired Pneumonia” (CAPNETZ) hosts the most comprehensive CAP database worldwide including more than 12,000 patients. CAPNETZ connects physicians, microbiologists, virologists, epidemiologists, and computer scientists throughout Europe. Our aim was to summarize the current situation in CAP research and identify the most pressing unmet needs in CAP research. METHODS: To identify areas of future CAP research, CAPNETZ followed a multiple-step procedure. First, research members of CAPNETZ were individually asked to identify unmet needs. Second, the top 100 experts in the field of CAP research were asked for their insights about the unmet needs in CAP (Delphi approach). Third, internal and external experts discussed unmet needs in CAP at a scientific retreat. RESULTS: Eleven topics for future CAP research were identified: detection of causative pathogens, next generation sequencing for antimicrobial treatment guidance, imaging diagnostics, biomarkers, risk stratification, antiviral and antibiotic treatment, adjunctive therapy, vaccines and prevention, systemic and local immune response, comorbidities, and long-term cardio-vascular complications. CONCLUSION: Pneumonia is a complex disease where the interplay between pathogens, immune system and comorbidities not only impose an immediate risk of mortality but also affect the patients’ risk of developing comorbidities as well as mortality for up to a decade after pneumonia has resolved. Our review of unmet needs in CAP research has shown that there are still major shortcomings in our knowledge of CAP

    Protocol to dissociate healthy and infected murine- and hamster-derived lung tissue for single-cell transcriptome analysis

    Get PDF
    In infectious disease research, single-cell RNA sequencing allows dissection of host-pathogen interactions. As a prerequisite, we provide a protocol to transform solid and complex organs such as lungs into representative diverse, viable single-cell suspensions. Our protocol describes performance of vascular perfusion, pneumonectomy, enzymatic digestion, and mechanical dissociation of lung tissue, as well as red blood cell lysis and counting of isolated cells. A challenge remains, however, to further increase the proportion of pulmonary endothelial cells without compromising on viability. For complete details on the use and execution of this protocol, please refer to Nouailles et al. (2021), Wyler et al. (2022), and Ebenig et al. (2022)

    Eosinophils Are Important for Protection, Immunoregulation and Pathology during Infection with Nematode Microfilariae

    Get PDF
    Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity
    corecore