26 research outputs found

    Mixture of ultracold lithium and cesium atoms in an optical dipole trap

    Full text link
    We present the first simultaneous trapping of two different ultracold atomic species in a conservative trap. Lithium and cesium atoms are stored in an optical dipole trap formed by the focus of a CO2_2 laser. Techniques for loading both species of atoms are discussed and observations of elastic and inelastic collisions between the two species are presented. A model for sympathetic cooling of two species with strongly different mass in the presence of slow evaporation is developed. From the observed Cs-induced evaporation of Li atoms we estimate a cross section for cold elastic Li-Cs collisions.Comment: 10 pages 9 figures, submitted to Appl. Phys. B; v2: Corrected evaporation formulas and some postscript problem

    Controlled polarization rotation of an optical field in multi-Zeeman-sublevel atoms

    Get PDF
    We investigate, both theoretically and experimentally, the phenomenon of polarization rotation of a weak, linearly-polarized optical (probe) field in an atomic system with multiple three-level electromagnetically induced transparency (EIT) sub-systems. The polarization rotation angle can be controlled by a circularly-polarized coupling beam, which breaks the symmetry in number of EIT subsystems seen by the left- and right-circularly-polarized components of the weak probe beam. A large polarization rotation angle (up to 45 degrees) has been achieved with a coupling beam power of only 15 mW. Detailed theoretical analyses including different transition probabilities in different transitions and Doppler-broadening are presented and the results are in good agreements with the experimentally measured results.Comment: 28pages, 12figure

    Synchronization of Hamiltonian motion and dissipative effects in optical lattices: Evidence for a stochastic resonance

    Full text link
    We theoretically study the influence of the noise strength on the excitation of the Brillouin propagation modes in a dissipative optical lattice. We show that the excitation has a resonant behavior for a specific amount of noise corresponding to the precise synchronization of the Hamiltonian motion on the optical potential surfaces and the dissipative effects associated with optical pumping in the lattice. This corresponds to the phenomenon of stochastic resonance. Our results are obtained by numerical simulations and correspond to the analysis of microscopic quantities (atomic spatial distributions) as well as macroscopic quantities (enhancement of spatial diffusion and pump-probe spectra). We also present a simple analytical model in excellent agreement with the simulations

    Kinetic Monte Carlo modelling of dipole blockade in Rydberg excitation experiment

    Full text link
    We present a method to model the interaction and the dynamics of atoms excited to Rydberg states. We show a way to solve the optical Bloch equations for laser excitation of the frozen gas in good agreement with the experiment. A second method, the Kinetic Monte Carlo method gives an exact solution of rate equations. Using a simple N-body integrator (Verlet), we are able to describe dynamical processes in space and time. Unlike more sophisticated methods, the Kinetic Monte Carlo simulation offers the possibility of numerically following the evolution of tens of thousands of atoms within a reasonable computation time. The Kinetic Monte Carlo simulation gives good agreement with dipole-blockade type of experiment. The role of ions and the individual particle effects are investigated.Comment: 23 pages. Submitted to New Journal of Physic

    Two-dimensional magneto-optical trap as a source of slow atoms

    No full text
    10.1103/PhysRevA.58.3891PHYSICAL REVIEW A5853891-389

    Low-cost mechanical shutter for light beams

    No full text
    corecore