2,961 research outputs found

    Ages of White Dwarf-Red Subdwarf Systems

    Full text link
    We provide the first age estimates for two recently discovered white dwarf-red subdwarf systems, LHS 193AB and LHS 300AB. These unusual systems provide a new opportunity for linking the reliable age estimates for the white dwarfs to the (measurable) metallicities of the red subdwarfs. We have obtained precise photometry in the VJRKCIKCJHV_{J}R_{KC}I_{KC}JH bands and spectroscopy covering from 6000\AA to 9000\AA for the two new systems, as well as for a comparison white dwarf-main sequence red dwarf system, GJ 283 AB. Using model grids available in the literature, we estimate the cooling age as well as temperature, surface gravity, mass, progenitor mass and {\it total} lifetimes of the white dwarfs. The results indicate that the two new systems are probably ancient thick disk objects with ages of at least 6-9 Gyr. We also conduct searches of red dwarf and white dwarf compendia from SDSS data and the L{\'e}pine Shara Proper Motion (LSPM) catalog for additional common proper motion white dwarf-red subdwarf systems. Only seven new candidate systems are found, which indicates the rarity of these systems.Comment: accepted for publication in Ap

    Prime diagnosticity in short-term repetition priming: Is primed evidence discounted, even when it reliably indicates the correct answer?

    Get PDF
    The authors conducted 4 repetition priming experiments that manipulated prime duration and prime diagnosticity in a visual forced-choice perceptual identification task. The strength and direction of prime diagnosticity produced marked effects on identification accuracy, but those effects were resistant to subsequent changes of diagnosticity. Participants learned to associate different diagnosticities with primes of different durations but not with primes presented in different colors. Regardless of prime diagnosticity, preference for a primed alternative covaried negatively with prime duration, suggesting that even for diagnostic primes, evidence discounting remains an important factor. A computational model, with the assumption that adaptation to the statistics of the experiment modulates the level of evidence discounting, accounted for these results

    Recall termination in free recall

    Get PDF
    Although much is known about the dynamics of\ud memory search in the free recall task, relatively little is\ud known about the factors related to recall termination. Rean-\ud alyzing individual trial data from 14 prior studies (1,079\ud participants in 28,015 trials) and defining termination as\ud occurring when a final response is followed by a long\ud nonresponse interval, we observed that termination proba-\ud bility increased throughout the recall period and that retriev-\ud al was more likely to terminate following an error than\ud following a correct response. Among errors, termination\ud probability was higher following prior-list intrusions and\ud repetitions than following extralist intrusions. To verify that\ud this pattern of results can be seen in a single study, we report\ud a new experiment in which 80 participants contributed recall\ud data from a total of 9,122 trials. This experiment replicated\ud the pattern observed in the aggregate analysis of the prior\ud studies.\u

    Low Luminosity Companions to White Dwarfs

    Get PDF
    This paper presents results of a near-infrared imaging survey for low mass stellar and substellar companions to white dwarfs. A wide field proper motion survey of 261 white dwarfs was capable of directly detecting companions at orbital separations between ∌100\sim100 and 5000 AU with masses as low as 0.05 M⊙M_{\odot}, while a deep near field search of 86 white dwarfs was capable of directly detecting companions at separations between ∌50\sim50 and 1100 AU with masses as low as 0.02 M⊙M_{\odot}. Additionally, all white dwarf targets were examined for near-infrared excess emission, a technique capable of detecting companions at arbitrarily close separations down to masses of 0.05 M⊙M_{\odot}. No brown dwarf candidates were detected, which implies a brown dwarf companion fraction of <0.5<0.5% for white dwarfs. In contrast, the stellar companion fraction of white dwarfs as measured by this survey is 22%, uncorrected for bias. Moreover, most of the known and suspected stellar companions to white dwarfs are low mass stars whose masses are only slightly greater than the masses of brown dwarfs. Twenty previously unknown stellar companions were detected, five of which are confirmed or likely white dwarfs themselves, while fifteen are confirmed or likely low mass stars. Similar to the distribution of cool field dwarfs as a function of spectral type, the number of cool unevolved dwarf companions peaks at mid-M type. Based on the present work, relative to this peak, field L dwarfs appear to be roughly 2-3 times more abundant than companion L dwarfs. Additionally, there is no evidence that the initial companion masses have been altered by post main sequence binary interactions.Comment: 149 pages, 59 figures, 11 tables, accepted to ApJ Supplement

    An empirical initial-final mass relation from hot, massive white dwarfs in NGC 2168 (M35)

    Full text link
    The relation between the zero-age main sequence mass of a star and its white-dwarf remnant (the initial-final mass relation) is a powerful tool for exploration of mass loss processes during stellar evolution. We present an empirical derivation of the initial-final mass relation based on spectroscopic analysis of seven massive white dwarfs in NGC 2168 (M35). Using an internally consistent data set, we show that the resultant white dwarf mass increases monotonically with progenitor mass for masses greater than 4 solar masses, one of the first open clusters to show this trend. We also find two massive white dwarfs foreground to the cluster that are otherwise consistent with cluster membership. These white dwarfs can be explained as former cluster members moving steadily away from the cluster at speeds of <~0.5 km/s since their formation and may provide the first direct evidence of the loss of white dwarfs from open clusters. Based on these data alone, we constrain the upper mass limit of WD progenitors to be >=5.8 solar masses at the 90% confidence level for a cluster age of 150 Myr.Comment: 14 pages, 3 figures. Accepted for publication in the Astrophysical Journal Letters. Contains some acknowledgements not in accepted version (for space reasons), otherwise identical to accepted versio

    Cool Customers in the Stellar Graveyard I: Limits to Extrasolar Planets Around the White Dwarf G29-38

    Full text link
    We present high contrast images of the hydrogen white dwarf G 29-38 taken in the near infrared with the Hubble Space Telescope and the Gemini North Telescope as part of a high contrast imaging search for substellar objects in orbit around nearby white dwarfs. We review the current limits on planetary companions for G29-38, the only nearby white dwarf with an infrared excess due to a dust disk. We add our recent observations to these limits to produce extremely tight constraints on the types of possible companions that could be present. No objects >> 6 MJup_{Jup} are detected in our data at projected separations >> 12 AU, and no objects >> 16 MJup_{Jup} are detected for separations from 3 to 12 AU, assuming a total system age of 1 Gyr. Limits for companions at separations << 3 AU come from a combination of 2MASS photometry and previous studies of G29-38's pulsations. Our imaging with Gemini cannot confirm a tentative claim for the presence of a low mass brown dwarf. These observations demonstrate that a careful combination of several techniques can probe nearby white dwarfs for large planets and low mass brown dwarfs.Comment: 20 pages, 4 figures, Accepted to Ap

    The Formation Rate, Mass and Luminosity Functions of DA White Dwarfs from the Palomar Green Survey

    Full text link
    Spectrophotometric observations at high signal-to-noise ratio were obtained of a complete sample of 347 DA white dwarfs from the Palomar Green (PG) Survey. Fits of observed Balmer lines to synthetic spectra calculated from pure-hydrogen model atmospheres were used to obtain robust values of Teff, log g, masses, radii, and cooling ages. The luminosity function of the sample, weighted by 1/Vmax, was obtained and compared with other determinations. The mass distribution of the white dwarfs is derived, after important corrections for the radii of the white dwarfs in this magnitude-limited survey and for the cooling time scales. The formation rate of DA white dwarfs from the PG is estimated to be 0.6x10^(-12) pc^(-3) yr^(-1). Comparison with predictions from a theoretical study of the white dwarf formation rate for single stars indicates that >80% of the high mass component requires a different origin, presumably mergers of lower mass double degenerate stars. In order to estimate the recent formation rate of all white dwarfs in the local Galactic disk, corrections for incompleteness of the PG, addition of the DB-DO white dwarfs, and allowance for stars hidden by luminous binary companions had to be applied to enhance the rate. An overall formation rate of white dwarfs recently in the local Galactic disk of 1.15+/-0.25x10^(-12) pc^(-3) yr^(-1) is obtained. Two recent studies of samples of nearby Galactic planetary nebulae lead to estimates around twice as high. Difficulties in reconciling these determinations are discussed.Comment: 73 pages, 18 figures, accepted for publication in the ApJ Supplemen

    Neuronal Activity in the Human Subthalamic Nucleus Encodes Decision Conflict during Action Selection

    Get PDF
    The subthalamic nucleus (STN), which receives excitatory inputs from the cortex and has direct connections with the inhibitory pathways\ud of the basal ganglia, is well positioned to efficiently mediate action selection. Here, we use microelectrode recordings captured during\ud deep brain stimulation surgery as participants engage in a decision task to examine the role of the human STN in action selection. We\ud demonstrate that spiking activity in the STN increases when participants engage in a decision and that the level of spiking activity\ud increases with the degree of decision conflict. These data implicate the STN as an important mediator of action selection during decision\ud processes.\u

    The New Class of Dusty DAZ White Dwarfs

    Get PDF
    Our mid-infrared survey of 124 white dwarfs with the Spitzer Space Telescope and the IRAC imager has revealed an infrared excess associated with the white dwarf WD 2115-560 naturally explained by circumstellar dust. This object is the fourth white dwarf observed to have circumstellar dust. All four are DAZ white dwarfs, i.e. they have both photospheric Balmer lines and photospheric metal lines. We discuss these four objects as a class, which we abbreviate "DAZd", where the "d" stands for "dust". Using an optically-thick, geometrically-thin disk model analogous to Saturn's rings, we find that the inner disk edges are at >~0.1 to 0.2 Ro and that the outer disk edges are ~0.3 to 0.6 Ro. This model naturally explains the accretion rates and lifetimes of the detected WD disks and the accretion rates inferred from photospheric metal abundances.Comment: 27 pages, 7 figures, ApJ accepte

    The Extent and Cause of the Pre-White Dwarf Instability Strip

    Get PDF
    One of the least understood aspects of white dwarf evolution is the process by which they are formed. We are aided, however, by the fact that many H- and He-deficient pre-white dwarfs (PWDs) are multiperiodic g-mode pulsators. Pulsations in PWDs provide a unique opportunity to probe their interiors, which are otherwise inaccesible to direct observation. Until now, however, the nature of the pulsation mechanism, the precise boundaries of the instability strip, and the mass distribution of the PWDs were complete mysteries. These problems must be addressed before we can apply knowledge of pulsating PWDs to improve understanding of white dwarf formation. This paper lays the groundwork for future theoretical investigations of these stars. In recent years, Whole Earth Telescope observations led to determination of mass and luminosity for the majority of the (non-central star) PWD pulsators. With these observations, we identify the common properties and trends PWDs exhibit as a class. We find that pulsators of low mass have higher luminosity, suggesting the range of instability is highly mass-dependent. The observed trend of decreasing periods with decreasing luminosity matches a decrease in the maximum (standing-wave) g-mode period across the instability strip. We show that the red edge can be caused by the lengthening of the driving timescale beyond the maximum sustainable period. This result is general for ionization-based driving mechanisms, and it explains the mass-dependence of the red edge. The observed form of the mass-dependence provides a vital starting point for future theoretical investigations of the driving mechanism. We also show that the blue edge probably remains undetected because of selection effects arising from rapid evolution.Comment: 40 pages, 6 figures, accepted by ApJ Oct 27, 199
    • 

    corecore