420 research outputs found

    Measurement of nuclear effects in neutrino interactions with minimal dependence on neutrino energy

    Get PDF
    We present a phenomenological study of nuclear effects in neutrino charged-current interactions, using transverse kinematic imbalances in exclusive measurements. Novel observables with minimal dependence on neutrino energy are proposed to study quasielastic scattering, and especially resonance production. They should be able to provide direct constraints on nuclear effects in neutrino- and antineutrino-nucleus interactions.Comment: 7 pages, 9 figures, accepted version by PR

    On the complementarity of Hyper-K and LBNF

    Full text link
    The next generation of long-baseline experiments is being designed to make a substantial step in the precision of measurements of neutrino-oscillation probabilities. Two qualitatively different proposals, Hyper-K and LBNF, are being considered for approval. This document outlines the complimentarity between Hyper-K and LBNF.Comment: 5 pager

    Initial report from the ICFA Neutrino Panel

    Full text link
    In July 2013 ICFA established the Neutrino Panel with the mandate "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development a neutrino factory as a future intense source of neutrinos for particle physics experiments". This, the Panel's Initial Report, presents the conclusions drawn by the Panel from three regional "Town Meetings" that took place between November 2013 and February 2014. After a brief introduction and a short summary of the status of the knowledge of the oscillation parameters, the report summarises the approved programme and identifies opportunities for the development of the field. In its conclusions, the Panel recognises that to maximise the discovery potential of the accelerator-based neutrino-oscillation programme it will be essential to exploit the infrastructures that exist at CERN, FNAL and J-PARC and the expertise and resources that reside in laboratories and institutes around the world. Therefore, in its second year, the Panel will consult with the accelerator-based neutrino-oscillation community and its stakeholders to: develop a road-map for the future accelerator-based neutrino-oscillation programme that exploits the ambitions articulated at CERN, FNAL and J-PARC and includes the programme of measurement and test-beam exposure necessary to ensure the programme is able to realise its potential; develop a proposal for a coordinated "Neutrino RD" programme, the accelerator and detector R&D programme required to underpin the next generation of experiments; and to explore the opportunities for the international collaboration necessary to realise the Neutrino Factory.Comment: ICFA Neutrino Panel 2014(01

    A Survey of the Northern Sky for TeV Point Sources

    Get PDF
    A search for steady TeV point sources anywhere in the northern sky has been made with data from the Milagrito air-shower-particle detector. Over 3 x 10**9 events collected from 1997 February to 1998 May have been used in this study. No statistically significant excess above the background from the isotropic flux of cosmic rays was found for any direction of the sky with declination between -5 degrees and 71.7 degrees. Upper limits are derived for the photon flux above 1 TeV from any steady point source in the northern sky.Comment: 2 Figure

    Observation of TeV Gamma Rays from the Crab Nebula with Milagro Using a New Background Rejection Technique

    Full text link
    The recent advances in TeV gamma-ray astronomy are largely the result of the ability to differentiate between extensive air showers generated by gamma rays and hadronic cosmic rays. Air Cherenkov telescopes have developed and perfected the "imaging" technique over the past several decades. However until now no background rejection method has been successfully used in an air shower array to detect a source of TeV gamma rays. We report on a method to differentiate hadronic air showers from electromagnetic air showers in the Milagro gamma ray observatory, based on the ability to detect the energetic particles in an extensive air shower. The technique is used to detect TeV emission from the Crab nebula. The flux from the Crab is estimated to be 2.68(+-0.42stat +- 1.4sys) x10^{-7} (E/1TeV)^{-2.59} m^{-2} s^{-1} TeV^{-1}, where the spectral index is assumed to be as given by the HEGRA collaboration.Comment: 22 pages, 11 figures, submitted to Astrophysical Journa
    • 

    corecore