248 research outputs found

    The role of surface wettability of copper and its alloys CuSn6, CuZn37 in antimicrobial efficacy standardized tests

    Get PDF
    The spread of bacterial infections often occurs through indirect contact with infected individuals. Thus, surfaces with antimicrobial properties have gained prominence in healthcare and public spaces. Testing standards exist for assessing the antibacterial effectiveness of these materials, but they do not consider surface properties, particularly surface wettability during microbiological tests. An experiment was conducted to modify copper and its alloys’ surfaces through chemical treatment, altering contact angles. The results revealed that contact angles significantly influence the contact area between droplets and test surfaces, as well as the evaporation time of droplets. These factors can ultimately impact the results of antimicrobial efficacy tests

    The \chi Factor: Determining the Strength of Activity in Low Mass Dwarfs

    Full text link
    We describe a new, distance-independent method for calculating the magnetic activity strength in low mass dwarfs, L_{H\alpha}/L_{bol}. Using a well-observed sample of nearby stars and cool standards spanning spectral type M0.5 to L0, we compute ``\chi'', the ratio between the continuum flux near H-alpha and the bolometric flux, f_{\lambda6560}/f_{bol}. This ratio may be multiplied by the measured equivalent width of the H-alpha emission line to yield L_{H\alpha}/L_{bol}. We provide \chi values for all objects in our sample, as well as fits to \chi as a function of color and average values by spectral type. This method was used by West et al.(2004) to examine trends in magnetic activity strength in low mass stars.Comment: 11 pages, 5 figures. Accepted for publication in PAS

    Coca-Cola Refreshments Class 8 Diesel Electric Hybrid Tractor Evaluation: 13-Month Final Report

    Get PDF
    This 13-month evaluation used five Kenworth T370 hybrid tractors and five Freightliner M2106 standard diesel tractors at a Coca Cola Refreshments facility in Miami, Florida. The primary objective was to evaluate the fuel economy, emissions, and operational field performance of hybrid electric vehicles when compared to similar-use conventional diesel vehicles. A random dispatch system ensures the vehicles are used in a similar manner. GPS logging, fueling, and maintenance records and laboratory dynamometer testing are used to evaluate the performance of these hybrid tractors. Both groups drive similar duty cycles with similar kinetic intensity (0.95 vs. 0.69), average speed (20.6 vs. 24.3 mph), and stops per mile (1.9 vs. 1.5). The study demonstrated the hybrid group had a 13.7% fuel economy improvement over the diesel group. Laboratory fuel economy and field fuel economy study showed similar trends along the range of KI and stops per mile. Hybrid maintenance costs were 51% lower per mile; hybrid fuel costs per mile were 12% less than for the diesels; and hybrid vehicle total cost of operation per mile was 24% less than the cost of operation for the diesel group

    A patient with abnormalities of the coronary arteries and non-compaction of the left ventricular myocardium resulting in ischaemic heart disease symptoms

    Get PDF
    Left ventricular non-compaction (LVNC) is a rare cardiomyopathy that results from unsettled embryogenesis of myocardium. It is morphologically characterised by the presence of non-compacted, this is hypertrabeculated, myocardium of the left ventricle with deep endocardial recesses. The clinical spectrum of symptoms is very wide — from asymptomatic patients through the cases of heart failure to the patients requiring heart transplantation. The diagnosis is most frequently based on the echocardiography. LVNC is often coexisted with other heart defects and coronary artery abnormalities. We described a case of a 58-year-old man with LVNC and coronary artery anomalies

    Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    Full text link
    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively

    Thirty-Six Month Evaluation of UPS Diesel Hybrid-Electric Delivery Vans

    Full text link
    This evaluation compared six hybrids and six standard diesels in UPS facilities in Phoenix, Arizona. Dispatch and maintenance practices are the same at both facilities. GPS logging, fueling, and maintenance records are used to evaluate the performance of these step delivery vans. The hybrids' average monthly mileage rate was 18% less than the diesel vans. The hybrids consistently were driven a fewer number of miles throughout the evaluation period. The hybrids idled more and operating at slower speeds than the diesels, and the diesels spent slightly more time operating at greater speeds, accounting for much of the hybrids fewer monthly miles. The average fuel economy for the hybrid vans is 13.0 mpg, 23% greater than the diesel vans 10.6 mpg. Total hybrid maintenance cost/mile of 0.141was90.141 was 9% more than the 0.130 for the diesel vans. Propulsion-related maintenance cost/mile of 0.037forthehybridvanswas250.037 for the hybrid vans was 25% more than the 0.029 for the diesel vans. Neither difference was found to be statistically significant. The hybrid group had a cumulative average of 96.3% uptime, less than the diesel group's 99.0% uptime. The hybrids experienced troubleshooting and recalibration issues related to prototype components that were primarily responsible for the lower uptime figures
    • …
    corecore