92,177 research outputs found
Gaussian Effective Potential and the Coleman's normal-ordering Prescription : the Functional Integral Formalism
For a class of system, the potential of whose Bosonic Hamiltonian has a
Fourier representation in the sense of tempered distributions, we calculate the
Gaussian effective potential within the framework of functional integral
formalism. We show that the Coleman's normal-ordering prescription can be
formally generalized to the functional integral formalism.Comment: 6 pages, revtex; With derivation details and an example added. To
appear in J. Phys.
Alternative approach to all-angle negative refraction in two-dimensional photonic crystals
We show that with an appropriate surface modification, a slab of photonic
crystal can be made to allow wave transmission within the band gap.
Furthermore, negative refraction and all-angle-negative-refraction (AANR) can
be achieved by this surface modification in frequency windows that were not
realized before in two-dimensional photonic crystals [C. Luo et al, Phys. Rev.
B 65, 201104 (2002)]. This approach to AANR leads to new applications in flat
lens imaging. Previous flat lens using photonic crystals requires object-image
distance u+v less than or equal to the lens thickness d, u+v d. Our approach
can be used to design flat lens with u+v=sd with s>>1, thus being able to image
large and/or far away objects. Our results are confirmed by FDTD simulations.Comment: 5 pages, 9 eps figs in RevTex forma
Superconductivity mediated by the antiferromagnetic spin-wave in chalcogenide iron-base superconductors
The ground state of KFeSe and other iron-based
selenide superconductors are doped antiferromagnetic semiconductors. There are
well defined iron local moments whose energies are separated from those of
conduction electrons by a large band gap in these materials. We propose that
the low energy physics of this system is governed by a model Hamiltonian of
interacting electrons with on-site ferromagnetic exchange interactions and
inter-site superexchange interactions. We have derived the effective pairing
potential of electrons under the linear spin-wave approximation and shown that
the superconductivity can be driven by mediating coherent spin wave excitations
in these materials. Our work provides a natural account for the coexistence of
superconducting and antiferromagnetic long range orders observed by neutron
scattering and other experiments.Comment: 4 pages, 3 figure
Duality between quantum and classical dynamics for integrable billiards
We establish a duality between the quantum wave vector spectrum and the
eigenmodes of the classical Liouvillian dynamics for integrable billiards.
Signatures of the classical eigenmodes appear as peaks in the correlation
function of the quantum wave vector spectrum. A semiclassical derivation and
numerical calculations are presented in support of the results. These classical
eigenmodes can be observed in physical experiments through the auto-correlation
of the transmission coefficient of waves in quantum billiards. Exact classical
trace formulas of the resolvent are derived for the rectangle, equilateral
triangle, and circle billiards. We also establish a correspondence between the
classical periodic orbit length spectrum and the quantum spectrum for
integrable polygonal billiards.Comment: 12 pages, 4 figure
The (1+1)-dimensional Massive sine-Gordon Field Theory and the Gaussian Wave-functional Approach
The ground, one- and two-particle states of the (1+1)-dimensional massive
sine-Gordon field theory are investigated within the framework of the Gaussian
wave-functional approach. We demonstrate that for a certain region of the
model-parameter space, the vacuum of the field system is asymmetrical.
Furthermore, it is shown that two-particle bound state can exist upon the
asymmetric vacuum for a part of the aforementioned region. Besides, for the
bosonic equivalent to the massive Schwinger model, the masses of the one boson
and two-boson bound states agree with the recent second-order results of a
fermion-mass perturbation calculation when the fermion mass is small.Comment: Latex, 11 pages, 8 figures (EPS files
- …