10,784 research outputs found

    Hysteresis in the quantum Hall regimes in electron double quantum well structures

    Full text link
    We present in this paper experimental results on the transport hysteresis in electron double quantum well structures. Exploring the measurement technique of fixing the magnetic field and sweeping a front gate voltage (Vg), we are able to study the hysteresis by varying the top layer Landau level fillings while maintaining a relatively constant filling factor in the bottom layer, allowing us to tackle the question of the sign of Rxx(up)-Rxx(down), where Rxx(up) is the magnetoresistance when Vg is swept up and Rxx(down) when Vg swept down. Furthermore, we observe that hysteresis is generally stronger in the even integer quantum Hall effect (IQHE) regime than in the odd-IQHE regime. This, we argue, is due to a larger energy gap for an even-IQHE state, determined by the Landau level separation, than that for an odd-IQHE state, determined by the Zeeman splitting

    A New Comparative Definition of Community and Corresponding Identifying Algorithm

    Full text link
    In this paper, a new comparative definition for community in networks is proposed and the corresponding detecting algorithm is given. A community is defined as a set of nodes, which satisfy that each node's degree inside the community should not be smaller than the node's degree toward any other community. In the algorithm, the attractive force of a community to a node is defined as the connections between them. Then employing attractive force based self-organizing process, without any extra parameter, the best communities can be detected. Several artificial and real-world networks, including Zachary Karate club network and College football network are analyzed. The algorithm works well in detecting communities and it also gives a nice description for network division and group formation.Comment: 11 pages, 4 fihure

    Spin waves in the block checkerboard antiferromagnetic phase

    Full text link
    Motivated by the discovery of new family 122 iron-based superconductors, we present the theoretical results on the ground state phase diagram, spin wave and dynamic structure factor of the extended J1J2J_{1}-J_{2} Heisenberg model. In the reasonable physical parameter region of K2Fe4Se5K_{2}Fe_{4}Se_{5}, we fi{}nd the block checkerboard antiferromagnetic order phase is stable. There are two acoustic branches and six optical branches spin wave in the block checkerboard antiferromagnetic phase, which has analytic expression in the high symmetry points. To compare the further neutron scattering experiments, we discuss the saddlepoint structure in the magnetic excitation spectrum and calculate the predicted inelastic neutron scattering pattern based on linear spin wave theory

    Diffusion Thermopower at Even Denominator Fractions

    Get PDF
    We compute the electron diffusion thermopower at compressible Quantum Hall states corresponding to even denominator fractions in the framework of the composite fermion approach. It is shown that the deviation from the linear low temperature behavior of the termopower is dominated by the logarithmic temperature corrections to the conductivity and not to the thermoelectric coefficient, although such terms are present in both quantities. The enhanced magnitude of this effect compared to the zero field case may allow its observation with the existing experimental techniques.Comment: Latex, 12 pages, Nordita repor

    Theory of adsorbate induced surface reconstruction on W(100)

    Full text link
    We report results of a theoretical study on an adsorbate induced surface reconstruction. Hydrogen adsorption on a W(100) surface causes a switching transition in the symmetry of the displacements of the W atoms within the ordered c(2x2) phase. This transition is modeled by an effective Hamiltonian, where the hydrogen degrees of freedom are integrated out. Based on extensive Monte Carlo renormalisation group calculations we show that the switching transition is of second order at high temperatures and of first order at low temperatures. This behavior is qualitatively explained in terms of an XY model where there is an interplay between four and eight fold anisotropy fields. We also compare the calculated phase diagrams with a simple mean field theory.Comment: CSC Preprint, 31 pages (plain TeX file, no figures

    Using dark modes for high-fidelity optomechanical quantum state transfer

    Full text link
    In a recent publication [Y.D. Wang and A.A. Clerk, Phys. Rev. Lett. 108, 153603 (2012)], we demonstrated that one can use interference to significantly increase the fidelity of state transfer between two electromagnetic cavities coupled to a common mechanical resonator over a naive sequential-transfer scheme based on two swap operations. This involved making use of a delocalized electromagnetic mode which is decoupled from the mechanical resonator, a so-called "mechanically-dark" mode. Here, we demonstrate the existence of a new "hybrid" state transfer scheme which incorporates the best elements of the dark-mode scheme (protection against mechanical dissipation) and the double-swap scheme (fast operation time). Importantly, this new scheme also does not require the mechanical resonator to be prepared initially in its ground state. We also provide additional details on the previously-described interference-enhanced transfer schemes, and provide an enhanced discussion of how the interference physics here is intimately related to the optomechanical analogue of electromagnetically-induced transparency (EIT). We also compare the various transfer schemes over a wide range of relevant experimental parameters, producing a "phase diagram" showing the the optimal transfer scheme for different points in parameter space.Comment: 39 pages, 11 figures NJP 14 (Focus issue on Optomechanics

    Exact Analysis of Scaling and Dominant Attractors Beyond the Exponential Potential

    Full text link
    By considering the potential parameter Γ\Gamma as a function of another potential parameter λ\lambda[47], We successfully extend the analysis of two-dimensional autonomous dynamical system of quintessence scalar field model to the analysis of three-dimension, which makes us be able to research the critical points of a large number of potentials beyond the exponential potential exactly. We find that there are ten critical points in all, three points P3,5,6P_{3, 5, 6}} are general points which are possessed by all quintessence models regardless of the form of potentials and the rest points are closely connected to the concrete potentials. It is quite surprising that, apart from the exponential potential, there are a large number of potentials which can give the scaling solution when the function f(λ)(=Γ(λ)1)f(\lambda)(=\Gamma(\lambda)-1) equals zero for one or some values of λ\lambda_{*} and if the parameter λ\lambda_{*} also satisfies the condition Eq.(16) or Eq.(17) at the same time. We give the differential equations to derive these potentials V(ϕ)V(\phi) from f(λ)f(\lambda). We also find that, if some conditions are satisfied, the de-Sitter-like dominant point P4P_4 and the scaling solution point P9P_9(or P10P_{10}) can be stable simultaneously but P9P_9 and P10P_{10} can not be stable simultaneity. Although we survey scaling solutions beyond the exponential potential for ordinary quintessence models in standard general relativity, this method can be applied to other extensively scaling solution models studied in literature[46] including coupled quintessence, (coupled-)phantom scalar field, k-essence and even beyond the general relativity case H2ρTnH^2 \propto\rho_T^n. we also discuss the disadvantage of our approach.Comment: 16 pages,no figure, this new revision has taken the suggestions from CQG referees and has been accepted for publication in Classical and Quantum Gravit

    Thermal and magnetic properties of integrable spin-1 and spin-3/2 chains with applications to real compounds

    Full text link
    The ground state and thermodynamic properties of spin-1 and spin-3/2 chains are investigated via exactly solved su(3) and su(4) models with physically motivated chemical potential terms. The analysis involves the Thermodynamic Bethe Ansatz and the High Temperature Expansion (HTE) methods. For the spin-1 chain with large single-ion anisotropy, a gapped phase occurs which is significantly different from the valence-bond-solid Haldane phase. The theoretical curves for the magnetization, susceptibility and specific heat are favourably compared with experimental data for a number of spin-1 chain compounds. For the spin-3/2 chain a degenerate gapped phase exists starting at zero external magnetic field. A middle magnetization plateau can be triggered by the single-ion anisotropy term. Overall, our results lend further weight to the applicability of integrable models to the physics of low-dimensional quantum spin systems. They also highlight the utility of the exact HTE method.Comment: 38 pages, 15 figure

    Pole-based approximation of Fermi-Dirac function

    Full text link
    Two approaches for the efficient rational approximation of the Fermi-Dirac function are discussed: one uses the contour integral representation and conformal mapping and the other is based on a version of the multipole representation of the Fermi-Dirac function that uses only simple poles. Both representations have logarithmic computational complexity. They are of great interest for electronic structure calculations.Comment: 16 pages, 8 figures, dedicated to Professor Andy Majda on the occasion of his 60th birthda
    corecore