204 research outputs found

    The retinoic acid receptor alpha (RARA) gene is not associated with myopia, hypermetropia, and ocular biometric measures

    Get PDF
    Purpose: The Retinoic Acid Receptor Alpha (RARA) gene is a potential candidate gene for myopia due to its differential expression in animal models during experimentally induced myopia. To test for whether RARA is associated with myopia we have undertaken a case-control study assessing for associations between RARA and myopia, hypermetropia, and ocular biometric measures. Methods: A total of 802 Anglo-Celtic individuals were genotyped. Five tag single nucleotide polymorphisms (tSNPs) in RARA with an r2 of 0.8 and a minor allele frequency greater than 5% were selected for genotyping. Genotype frequencies of these 5 tSNPs were compared between individuals with emmetropia and those with myopia or hypermetropia. A quantitative analysis was also performed to assess associations with ocular biometric measures including axial length, corneal curvature and anterior chamber depth. Results: We did not identify any significant association between tSNPs in RARA with either myopia or hypermetropia as qualitative traits. Neither did we identify any significant associations of these tSNPs with the quantitative traits of axial length, corneal curvature and anterior chamber depth. Conclusions: This is the first study to assess for associations between RARA and myopia, hypermetropia, and ocular biometric measures. Our findings suggest that variations in the nucleotide sequence of RARA are not associated with myopia, hypermetropia, or ocular biometric measures in our population

    A Gene Expression Panel is Accurate for Diagnosis and Monitoring Treatment of Eosinophilic Esophagitis in Adults

    Get PDF
    Eosinophilic esophagitis (EoE) can be difficult to diagnose. We aimed to evaluate whether a gene expression score could differentiate adult EoE cases from non-EoE controls and to determine whether scores normalized after treatment for EoE

    Toward allele-specific targeting therapy and pharmacodynamic marker for spinocerebellar ataxia type 3

    Get PDF
    Spinocerebellar ataxia type 3 (SCA3), caused by a CAG repeat expansion in the ataxin-3 gene (ATXN3), is characterized by neuronal polyglutamine (polyQ) ATXN3 protein aggregates. Although there is no cure for SCA3, gene-silencing approaches to reduce toxic polyQ ATXN3 showed promise in preclinical models. However, a major limitation in translating putative treatments for this rare disease to the clinic is the lack of pharmacodynamic markers for use in clinical trials. Here, we developed an immunoassay that readily detects polyQ ATXN3 proteins in human biological fluids and discriminates patients with SCA3 from healthy controls and individuals with other ataxias. We show that polyQ ATXN3 serves as a marker of target engagement in human fibroblasts, which may bode well for its use in clinical trials. Last, we identified a single-nucleotide polymorphism that strongly associates with the expanded allele, thus providing an exciting drug target to abrogate detrimental events initiated by mutant ATXN3. Gene-silencing strategies for several repeat diseases are well under way, and our results are expected to improve clinical trial preparedness for SCA3 therapies

    First characterization of the SPADnet sensor:a digital silicon photomultiplier for PET applications

    Get PDF
    Silicon Photomultipliers have the ability to replace photomultiplier tubes when used as light sensors in scintillation gamma-ray detectors. Their timing properties, compactness, and magnetic field compatibility make them interesting for use in Time-of-Flight Magnetic Resonance Imaging compatible Positron Emission Tomography. In this paper, we present a new fully digital Single Photon Avalanche Diode (SPAD) based detector fabricated in CMOS image sensor technology. It contains 16x8 pixels with a pitch of 610x571.2 mu m(2). The Dark Count Rate and the Photon Detection Probability of each SPAD has been measured and the homogeneity of these parameters in the entire 92000 SPAD array is shown. The sensor has been optically coupled to a single LYSO needle and a LYSO array. The scintillator crystal was irradiated with several gamma sources and the resulting images and energy spectra are presented
    • 

    corecore