27,656 research outputs found
A Birkhoff connection between quantum circuits and linear classical reversible circuits
Birkhoff's theorem tells how any doubly stochastic matrix can be decomposed as a weighted sum of permutation matrices. Similar theorems on unitary matrices reveal a connection between quantum circuits and linear classical reversible circuits. It triggers the question whether a quantum computer can be regarded as a superposition of classical reversible computers
The use of electron scattering for studying atomic momentum distributions: The case of graphite and diamond
The momentum distributions of C atoms in polycrystalline diamond (produced by chemical vapor deposition) and in highly oriented pyrolitic graphite (HOPG) are studied by scattering of 40 keV electrons at 135°. By measuring the Doppler broadening of the energy of the elastically scattered electrons, we resolve a Compton profile of the motion of the C atoms. The aim of the present work is to resolve long-standing disagreements between the calculated kinetic energies of carbon atoms in HOPG and in diamond films and the measured ones, obtained both by neutron Compton scattering (NCS) and by nuclear resonance photon scattering (NRPS). The anisotropy of the momentum distribution in HOPG was measured by rotating the HOPG sample relative to the electron beam. The obtained kinetic energies for the motion component along, and perpendicular to, the graphite planes were somewhat higher than those obtained from the most recent NCS data of HOPG. Monte Carlo simulations indicate that multiple scattering adds about 2% to the obtained kinetic energies. The presence of different isotopes in carbon affects the measurement at a 1% level. After correcting for these contributions, the kinetic energies are 3%-6% larger than the most recent NCS results for HOPG, but 15%-25% smaller than the NRPS results. For diamond, the corrected direction-averaged kinetic energy is â 6% larger than the calculated value. This compares favorably to the â25% discrepancy between theory and both the NCS and NRPS results for diamond.This work is made possible
by a grant of the Australian Research Council
CLIC Background Studies and optimization of the innermost tracker elements
The harsh machine background at the Compact Linear Collider (CLIC) forms a
strong constraint on the design of the innermost part of the tracker. For the
CLIC Conceptual Design Report, the detector concepts developed for the
International Linear Collider (ILC) were adapted to the CLIC environment. We
present the new layout for the Vertex Detector and the Forward Tracking Disks
of the CLIC detector concepts, as well as the background levels in these
detectors. We also study the dependence of the background rates on technology
parameters like thickness of the active layer and detection threshold.Comment: 7 pages, 5 figures, LCWS 201
Expression systems for industrial Gram-positive bacteria with low guanine and cytosine content
Recent years have seen an increase in the development of gene expression systems for industrial Gram-positive bacteria with low guanine and cytosine content that belong to the genera Bacillus, Clostridium, Lactococcus, Lactobacillus, Staphylococcus and Streptococcus. In particular, considerable advances have been made in the construction of inducible gene expression systems based on the capacity of these bacteria to utilize specific sugars or to secrete autoinducing peptides that are involved in quorum sensing. These controlled expression systems allow for present and future exploitation of these bacteria as cell factories in medical, agricultural, and food biotechnology.
Septic Arthritis Caused by Legionella dumoffii in a Patient with Systemic Lupus Erythematosus-Like Disease
We describe a patient with systemic lupus erythematosus (SLE)-like disease on immunosuppressive treatment who developed septic arthritis of the knee involving Legionella dumoffii. Cultures initially remained negative. A broad-range 16S PCR using synovial fluid revealed L. dumoffii rRNA genes, a finding that was subsequently confirmed by positive Legionella culture results
Extracting the top-quark running mass using +1-jet events produced at the Large Hadron Collider
We present the calculation of the next-to-leading order QCD corrections for
top-quark pair production in association with an additional jet at hadron
colliders, using the modified minimal subtraction scheme to renormalize the
top-quark mass. The results are compared to measurements at the Large Hadron
Collider run I. In particular, we determine the top-quark running mass from a
fit of the theoretical results presented here to the LHC data
The phenomenology of electric dipole moments in models of scalar leptoquarks
We study the phenomenology of electric dipole moments (EDMs) induced in
various scalar leptoquark models. We consider generic leptoquark couplings to
quarks and leptons and match to Standard Model effective field theory. After
evolving the resulting operators to low energies, we connect to EDM experiments
by using up-to-date hadronic, nuclear, and atomic matrix elements. We show that
current experimental limits set strong constraints on the possible CP-violating
phases in leptoquark models. Depending on the quarks and leptons involved in
the interaction, the existing searches for EDMs of leptons, nucleons, atoms,
and molecules all play a role in constraining the CP-violating couplings. We
discuss the impact of hadronic and nuclear uncertainties as well as the
sensitivities that can be achieved with future EDM experiments. Finally, we
study the impact of EDM constraints on a specific leptoquark model that can
explain the recent -physics anomalies.Comment: Published versio
High pT Hadronic Top Quark Identification Part II: the lifetime signature
At the LHC top quarks will for the first time be produced abundantly and with very large transverse momenta. For hadronic decays of top quarks at large pT the three jets merge into a single jet: a top monojet. Identification of these objects among the overwhelming QCD di-jet background requires the development of specific experimental techniques. In this note the use of flavour tagging algorithms based on the B-hadron lifetime for the identification of top monojets will be explored
- âŠ