1,132 research outputs found

    Gell-Mann - Low Function in QED for the arbitrary coupling constant

    Full text link
    The Gell-Mann -- Low function \beta(g) in QED (g is the fine structure constant) is reconstructed. At large g, it behaves as \beta_\infty g^\alpha with \alpha\approx 1, \beta_\infty\approx 1.Comment: 5 pages, PD

    H-theorem in quantum physics

    Full text link
    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.Comment: 8 pages, 4 figure

    Analytical realization of finite-size scaling for Anderson localization. Does the band of critical states exist for d>2?

    Full text link
    An analytical realization is suggested for the finite-size scaling algorithm based on the consideration of auxiliary quasi-1D systems. Comparison of the obtained analytical results with the results of numerical calculations indicates that the Anderson transition point is splitted into the band of critical states. This conclusion is supported by direct numerical evidence (Edwards and Thouless, 1972; Last and Thouless, 1974; Schreiber, 1985; 1990). The possibility of restoring the conventional picture still exists but requires a radical reinterpretetion of the raw numerical data.Comment: PDF, 11 page
    • …
    corecore