5,710 research outputs found

    Polaritons and Pairing Phenomena in Bose--Hubbard Mixtures

    Full text link
    Motivated by recent experiments on cold atomic gases in ultra high finesse optical cavities, we consider the problem of a two-band Bose--Hubbard model coupled to quantum light. Photoexcitation promotes carriers between the bands and we study the non-trivial interplay between Mott insulating behavior and superfluidity. The model displays a global U(1) X U(1) symmetry which supports the coexistence of Mott insulating and superfluid phases, and yields a rich phase diagram with multicritical points. This symmetry property is shared by several other problems of current experimental interest, including two-component Bose gases in optical lattices, and the bosonic BEC-BCS crossover problem for atom-molecule mixtures induced by a Feshbach resonance. We corroborate our findings by numerical simulations.Comment: 4 pages, 3 figure

    Modeling the elastic transmission of tidal stresses to great distances inland in channelized ice streams

    Get PDF
    Geodetic surveys suggest that ocean tides can modulate the motion of Antarctic ice streams, even at stations many tens of kilometers inland from the grounding line. These surveys suggest that ocean tidal stresses can perturb ice stream motion at distances about an order of magnitude farther inland than tidal flexure of the ice stream alone. Recent models exploring the role of tidal perturbations in basal shear stress are primarily one- or two-dimensional, with the impact of the ice stream margins either ignored or parameterized. Here, we use two- and three-dimensional finite-element modeling to investigate transmission of tidal stresses in ice streams and the impact of considering more realistic, three-dimensional ice stream geometries. Using Rutford Ice Stream as a real-world comparison, we demonstrate that the assumption that elastic tidal stresses in ice streams propagate large distances inland fails for channelized glaciers due to an intrinsic, exponential decay in the stress caused by resistance at the ice stream margins. This behavior is independent of basal conditions beneath the ice stream and cannot be fit to observations using either elastic or nonlinear viscoelastic rheologies without nearly complete decoupling of the ice stream from its lateral margins. Our results suggest that a mechanism external to the ice stream is necessary to explain the tidal modulation of stresses far upstream of the grounding line for narrow ice streams. We propose a hydrologic model based on time-dependent variability in till strength to explain transmission of tidal stresses inland of the grounding line. This conceptual model can reproduce observations from Rutford Ice Stream

    Topological universality of level dynamics in quasi-one-dimensional disordered conductors

    Full text link
    Nonperturbative, in inverse Thouless conductance 1/g, corrections to distributions of level velocities and level curvatures in quasi-one-dimensional disordered conductors with a topology of a ring subject to a constant vector potential are studied within the framework of the instanton approximation of nonlinear sigma-model. It is demonstrated that a global character of the perturbation reveals the universal features of the level dynamics. The universality shows up in the form of weak topological oscillations of the magnitude ~ exp(-g) covering the main bodies of the densities of level velocities and level curvatures. The period of discovered universal oscillations does not depend on microscopic parameters of conductor, and is only determined by the global symmetries of the Hamiltonian before and after the perturbation was applied. We predict the period of topological oscillations to be 4/(pi)^2 for the distribution function of level curvatures in orthogonal symmetry class, and 3^(1/2)/(pi) for the distribution of level velocities in unitary and symplectic symmetry classes.Comment: 15 pages (revtex), 3 figure

    Distribution of "level velocities" in quasi 1D disordered or chaotic systems with localization

    Full text link
    The explicit analytical expression for the distribution function of parametric derivatives of energy levels ("level velocities") with respect to a random change of scattering potential is derived for the chaotic quantum systems belonging to the quasi 1D universality class (quantum kicked rotator, "domino" billiard, disordered wire, etc.).Comment: 11 pages, REVTEX 3.

    Anomalous flux-flow dynamics in layered type-II superconductors at low temperatures

    Full text link
    Low-temperature dissipation due to vortex motion in strongly anisotropic type-II superconductors with a moderate disorder (Δ2/EF/τΔ\Delta^2/E_F \ll \hbar/\tau \ll \Delta) is shown to be determined by the Zener-type transitions between the localized electronic states in the vortex core. Statistics of these levels is described by the random matrix ensemble of the class C defined recently by Atland and Zirnbauer [cond-mat/9602137], so the vortex motion leads naturally to the new example of a parametric statistics of energy levels. The flux-flow conductivity σxx\sigma_{xx} is a bit lower than the quasiclassical one and {\it grows} slowly with the increase of the electric field.Comment: 4 pages, Revte

    Energy absorption in time-dependent unitary random matrix ensembles: dynamic vs Anderson localization

    Full text link
    We consider energy absorption in an externally driven complex system of noninteracting fermions with the chaotic underlying dynamics described by the unitary random matrices. In the absence of quantum interference the energy absorption rate W(t) can be calculated with the help of the linear-response Kubo formula. We calculate the leading two-loop interference correction to the semiclassical absorption rate for an arbitrary time dependence of the external perturbation. Based on the results for periodic perturbations, we make a conjecture that the dynamics of the periodically-driven random matrices can be mapped onto the one-dimensional Anderson model. We predict that in the regime of strong dynamic localization W(t) ln(t)/t^2 rather than decays exponentially.Comment: 6 pages, 1 figur

    Bose--Hubbard Models Coupled to Cavity Light Fields

    Full text link
    Recent experiments on strongly coupled cavity quantum electrodynamics present new directions in "matter-light" systems. Following on from our previous work [Phys. Rev. Lett. 102, 135301 (2009)] we investigate Bose-Hubbard models coupled to a cavity light field. We discuss the emergence of photoexcitations or "polaritons" within the Mott phase, and obtain the complete variational phase diagram. Exploiting connections to the super-radiance transition in the Dicke model we discuss the nature of polariton condensation within this novel state. Incorporating the effects of carrier superfluidity, we identify a first-order transition between the superradiant Mott phase and the single component atomic superfluid. The overall predictions of mean field theory are in excellent agreement with exact diagonalization and we provide details of superfluid fractions, density fluctuations, and finite size effects. We highlight connections to recent work on coupled cavity arrays.Comment: 16 pages, 17 figure

    Classical and Quantum Dynamics in a Random Magnetic Field

    Full text link
    Using the supersymmetry approach, we study spectral statistical properties of a two-dimensional quantum particle subject to a non-uniform magnetic field. We focus mainly on the problem of regularisation of the field theory. Our analysis begins with an investigation of the spectral properties of the purely classical evolution operator. We show that, although the kinetic equation is formally time-reversible, density relaxation is controlled by {\em irreversible} classical dynamics. In the case of a weak magnetic field, the effective kinetic operator corresponds to diffusion in the angle space, the diffusion constant being determined by the spectral resolution of the inhomogeneous magnetic field. Applying these results to the quantum problem, we demonstrate that the low-lying modes of the field theory are related to the eigenmodes of the irreversible classical dynamics, and the higher modes are separated from the zero mode by a gap associated with the lowest density relaxation rate. As a consequence, we find that the long-time properties of the system are characterised by universal Wigner-Dyson statistics. For a weak magnetic field, we obtain a description in terms of the quasi one-dimensional non-linear σ\sigma-model.Comment: 16 pages, RevTe

    Non-universal corrections to the level curvature distribution beyond random matrix theory

    Full text link
    The level curvature distribution function is studied beyond the random matrix theory for the case of T-breaking perturbations over the orthogonal ensemble. The leading correction to the shape of the level curvature distribution is calculated using the nonlinear sigma-model. The sign of the correction depends on the presence or absence of the global gauge invariance and is different for perturbations caused by the constant vector-potential and by the random magnetic field. Scaling arguments are discussed that indicate on the qualitative difference in the level statistics in the dirty metal phase for space dimensionalities d4d4.Comment: 4 pages, Late

    Pattern Formation as a Signature of Quantum Degeneracy in a Cold Exciton System

    Full text link
    The development of a Turing instability to a spatially modulated state in a photoexcited electron-hole system is proposed as a novel signature of exciton Bose statistics. We show that such an instability, which is driven by kinetics of exciton formation, can result from stimulated processes that build up near quantum degeneracy. In the spatially uniform 2d electron-hole system, the instability leads to a triangular lattice pattern while, at an electron-hole interface, a periodic 1d pattern develops. We analyze the mechanism of wavelength selection, and show that the transition is abrupt (type I) for the uniform 2d system, and continuous (type II) for the electron-hole interface.Comment: 5 pages, 3 figure
    corecore