1,113 research outputs found

    Monitoring of the epizootic situation regarding trichurosis of sheep in the Poltava region

    Get PDF
    Sheep breeding is a branch of animal husbandry that is unique in terms of the variety and specificity of products. Sheep can utilize feed resources that are almost inaccessible to other types of farm animals. One of the factors in increasing the efficiency of sheep breeding is ensuring the well-being of farms concerning invasive diseases, particularly trichurosis. Successful control of trichurosis in sheep farms is the most effective for monitoring and forecasting the development of the epizootic situation depending on the climate-geographical zone. The work aimed to monitor the epizootic situation regarding sheep trichurosis in the Poltava region. According to the analysis of the statistical data of the reporting documentation of the Main Department of the State Production and Consumer Service in the Poltava region for 2018–2022, it was established that the share of helminthiasis among diseases of infectious etiology of sheep reaches 99.6 %. At the same time, among helminthiasis, nematodes have the highest specific weight – 69.0 %, and trematodes were less common – 31.0 %. Strongyloidiasis (68.05 %) was diagnosed most frequently among helminth infections during the studied period. A smaller percentage was strongylidosis of digestive organs (17.16 %) and trichurosis (11.24 %). Dictyocaulosis was rarely diagnosed among livestock (3.55 %). The average extent of trichurosis infestation of sheep during the investigated period in the territory of the Poltava region was 7.51 %, ranging from 5.83 to 9.26 %. Indicators of the extent of trichurosis invasion ranged from 5.45 to 33.33 % by area. According to the results of coproovoscopy, the highest values of sheep infestation with Trichuris were found in the farms of Karliv and Mashiv regions – 33.33 and 20.0 %, respectively. Less often, trichurosis was diagnosed in sheep farms of Dykanskyi (8.0 %), Reshetylivskyi (6.67 %), and Kotelevskyi (5.45 %) districts. The obtained data from monitoring studies prove the relevance of the further and more in-depth analysis of the spread of trichurosis infestation among sheep in the territory of the Poltava region, taking into account the age and seasonal dynamics of the disease, as well as the peculiarities of its course as part of mixed infestations

    Magnetic charge and ordering in kagome spin ice

    Full text link
    We present a numerical study of magnetic ordering in spin ice on kagome, a two-dimensional lattice of corner-sharing triangles. The magnet has six ground states and the ordering occurs in two stages, as one might expect for a six-state clock model. In spin ice with short-range interactions up to second neighbors, there is an intermediate critical phase separated from the paramagnetic and ordered phases by Kosterlitz-Thouless transitions. In dipolar spin ice, the intermediate phase has long-range order of staggered magnetic charges. The high and low-temperature phase transitions are of the Ising and 3-state Potts universality classes, respectively. Freeze-out of defects in the charge order produces a very large spin correlation length in the intermediate phase. As a result of that, the lower-temperature transition appears to be of the Kosterlitz-Thouless type.Comment: 20 pages, 12 figures, accepted version with minor change

    The thickness of a liquid layer on the free surface of ice as obtained from computer simulation

    Full text link
    Molecular dynamic simulations were performed for ice Ih with a free surface by using four water models, SPC/E, TIP4P, TIP4P/Ice and TIP4P/2005. The behavior of the basal plane, the primary prismatic plane and of the secondary prismatic plane when exposed to vacuum was analyzed. We observe the formation of a thin liquid layer at the ice surface at temperatures below the melting point for all models and the three planes considered. For a given plane it was found that the thickness of a liquid layer was similar for different water models, when the comparison is made at the same undercooling with respect to the melting point of the model. The liquid layer thickness is found to increase with temperature. For a fixed temperature it was found that the thickness of the liquid layer decreases in the following order: the basal plane, the primary prismatic plane, and the secondary prismatic plane. For the TIP4P/Ice model, a model reproducing the experimental value of the melting temperature of ice, the first clear indication of the formation of a liquid layer appears at about -100 Celsius for the basal plane, at about -80 Celsius for the primary prismatic plane and at about -70 Celsius for the secondary prismatic plane.Comment: 41 pages and 13 figure

    Novel magnetic phases in a Gd2Ti2O7 pyrochlore for a field applied along the [100] axis

    Full text link
    We report on longitudinal and transverse magnetisation measurements performed on single crystal samples of Gd2Ti2O7 for a magnetic field applied along the [100] direction. The measurements reveal the presence of previously unreported phases in fields below 10 kOe in an addition to the higher-field-induced phases that are also seen for H//[111], [110], and [112]. The proposed H-T phase diagram for the [100] direction looks distinctly different from all the other directions studied previously.Comment: 4 pages, 5 figure

    Structural and Magnetic Investigations of Single-Crystals of the Neodymium Zirconate Pyrochlore, Nd2Zr2O7

    Get PDF
    We report structural and magnetic properties studies of large high quality single-crystals of the frustrated magnet, Nd2_2Zr2_2O7_7. Powder x-ray diffraction analysis confirms that Nd2_2Zr2_2O7_7 adopts the pyrochlore structure. Room-temperature x-ray diffraction and time-of-flight neutron scattering experiments show that the crystals are stoichiometric in composition with no measurable site disorder. The temperature dependence of the magnetic susceptibility shows no magnetic ordering at temperatures down to 0.5 K. Fits to the magnetic susceptibility data using a Curie-Weiss law reveal a ferromagnetic coupling between the Nd moments. Magnetization versus field measurements show a local Ising anisotropy along the axes of the Nd3+^{3+} ions in the ground state. Specific heat versus temperature measurements in zero applied magnetic field indicate the presence of a thermal anomaly below T∼7T\sim7 K, but no evidence of magnetic ordering is observed down to 0.5 K. The experimental temperature dependence of the single-crystal bulk dc susceptibility and isothermal magnetization are analyzed using crystal field theory and the crystal field parameters and exchange coupling constants determined.Comment: 10 pages, 6 figures, 4 tables. Accepted for publication in Physical Review

    Indirect Self-Modulation Instability Measurement Concept for the AWAKE Proton Beam

    Get PDF
    AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV/c proton beam from the CERN SPS (longitudinal beam size sigma_z = 12 cm) which will be sent into a 10 m long plasma section with a nominal density of approx. 7x10^14 atoms/cm3 (plasma wavelength lambda_p = 1.2mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defocused beam shape with changing radius. Using a 1 mm thick Chromox scintillation screen for imaging of the self-modulated proton bunch, an edge resolution of 0.6 mm and hence a SMI saturation point resolution of 1.2 m can be achieved.Comment: 4 pages, 4 figures, EAAC conference proceeding

    Benchmarking acid and base dopants with respect to enabling the ice V to XIII and ice VI to XV hydrogen-ordering phase transitions

    Full text link
    Doping the hydrogen-disordered phases of ice V, VI and XII with hydrochloric acid (HCl) has led to the discovery of their hydrogen-ordered counterparts ices XIII, XV and XIV. Yet, the mechanistic details of the hydrogen-ordering phase transitions are still not fully understood. This includes in particular the role of the acid dopant and the defect dynamics that it creates within the ices. Here we investigate the effects of several acid and base dopants on the hydrogen ordering of ices V and VI with calorimetry and X-ray diffraction. HCl is found to be most effective for both phases which is attributed to a favourable combination of high solubility and strong acid properties which create mobile H3O+ defects that enable the hydrogen-ordering processes. Hydrofluoric acid (HF) is the second most effective dopant highlighting that the acid strengths of HCl and HF are much more similar in ice than they are in liquid water. Surprisingly, hydrobromic acid doping facilitates hydrogen ordering in ice VI whereas only a very small effect is observed for ice V. Conversely, lithium hydroxide (LiOH) doping achieves a performance comparable to HF-doping in ice V but it is ineffective in the case of ice VI. Sodium hydroxide, potassium hydroxide (as previously shown) and perchloric acid doping are ineffective for both phases. These findings highlight the need for future computational studies but also raise the question why LiOH-doping achieves hydrogen-ordering of ice V whereas potassium hydroxide doping is most effective for the 'ordinary' ice Ih.Comment: 18 pages, 7 figures, 1 tabl
    • …
    corecore