782 research outputs found
Nernst effect, quasiparticles, and d-density waves in cuprates
We examine the possibility that the large Nernst signal observed in the
pseudogap regime of hole-doped cuprates originates from quasiparticle transport
in a state with d-density wave (DDW) order, proposed by S. Chakravarty et al.
[Phys. Rev. B 63, 094503 (2001)]. We find that the Nernst coefficient can be
moderately enhanced in magnitude by DDW order, and is generally of negative
sign. Thus, the quasiparticles of the DDW state cannot account for the large
and positive Nernst signal observed in the pseudogap phase of the cuprates.
However, the general considerations outlined in this paper may be of broader
relevance, in particular to the recent measurements of Bel et al. in NbSe_2 and
CeCoIn_5 [Phys. Rev. Lett. 91, 066602 (2003); ibid. 92, 217002 (2004)].Comment: 9 pages, 3 figures; published versio
Multispin correlations and pseudo-thermalization of the transient density matrix in solid-state NMR: free induction decay and magic echo
Quantum unitary evolution typically leads to thermalization of generic
interacting many-body systems. There are very few known general methods for
reversing this process, and we focus on the magic echo, a radio-frequency pulse
sequence known to approximately "rewind" the time evolution of dipolar coupled
homonuclear spin systems in a large magnetic field. By combining analytic,
numerical, and experimental results we systematically investigate factors
leading to the degradation of magic echoes, as observed in reduced revival of
mean transverse magnetization. Going beyond the conventional analysis based on
mean magnetization we use a phase encoding technique to measure the growth of
spin correlations in the density matrix at different points in time following
magic echoes of varied durations and compare the results to those obtained
during a free induction decay (FID). While considerable differences are
documented at short times, the long-time behavior of the density matrix appears
to be remarkably universal among the types of initial states considered -
simple low order multispin correlations are observed to decay exponentially at
the same rate, seeding the onset of increasingly complex high order
correlations. This manifestly athermal process is constrained by conservation
of the second moment of the spectrum of the density matrix and proceeds
indefinitely, assuming unitary dynamics.Comment: 12 Pages, 9 figure
Biot-Savart correlations in layered superconductors
We discuss the superconductor to normal phase transition in an
infinite-layered type-II superconductor in the limit where the Josephson
coupling between layers is negligible. We model each layer as a neutral gas of
thermally excited pancake vortices. We assume the dominant interaction between
vortices in the same and in different layers is the electromagnetic interaction
between the screening currents induced by these vortices. Our main result,
obtained by exactly solving the leading order renormalization group flow, is
that the phase transition in this model is a Kosterlitz--Thouless transition
despite being a three--dimensional system. While the transition itself is
driven by the unbinding of two-dimensional pancake vortices, an RG analysis of
the low temperature phase and a mean-field theory of the high temperature phase
reveal that both phases possess three-dimensional correlations. An experimental
consequence of this is that the jump in the measured in-plane superfluid
stiffness, which is a universal quantity in 2d Kosterlitz-Thouless theory, will
receive a small non--universal correction (of order 1% in
BiSrCaCuO). This overall picture places some claims
expressed in the literature on a more secure analytical footing and also
resolves some conflicting views.Comment: 16 pages, 2 figures; minor typos corrected, references adde
- …