439 research outputs found

    Efficient quantum algorithm for preparing molecular-system-like states on a quantum computer

    Full text link
    We present an efficient quantum algorithm for preparing a pure state on a quantum computer, where the quantum state corresponds to that of a molecular system with a given number mm of electrons occupying a given number nn of spin orbitals. Each spin orbital is mapped to a qubit: the states ∣1>| 1 > and ∣0>| 0> of the qubit represent, respectively, whether the spin orbital is occupied by an electron or not. To prepare a general state in the full Hilbert space of nn qubits, which is of dimension 2n2^{n}%, O(2n)O(2^{n}) controlled-NOT gates are needed, i.e., the number of gates scales \emph{exponentially} with the number of qubits. We make use of the fact that the state to be prepared lies in a smaller Hilbert space, and we find an algorithm that requires at most O(2m+1nm/m!)O(2^{m+1} n^{m}/{m!}) gates, i.e., scales \emph{polynomially} with the number of qubits nn, provided n≫mn\gg m. The algorithm is simulated numerically for the cases of the hydrogen molecule and the water molecule. The numerical simulations show that when additional symmetries of the system are considered, the number of gates to prepare the state can be drastically reduced, in the examples considered in this paper, by several orders of magnitude, from the above estimate.Comment: 11 pages, 8 figures, errors are corrected, Journal information adde

    Conversion of terahertz wave polarization at the boundary of a layered superconductor due to the resonance excitation of oblique surface waves

    Full text link
    We predict a complete TM-TE transformation of the polarization of terahertz electromagnetic waves reflected from a strongly anisotropic boundary of a layered superconductor. We consider the case when the wave is incident on the superconductor from a dielectric prism separated from the sample by a thin vacuum gap. The physical origin of the predicted phenomenon is similar to the Wood anomalies known in optics, and is related to the resonance excitation of the oblique surface waves. We also discuss the dispersion relation for these waves, propagating along the boundary of the superconductor at some angle with respect to the anisotropy axis, as well as their excitation by the attenuated-total-reflection method.Comment: 4 pages, 5 figure

    Self-induced tunable transparency in layered superconductors

    Full text link
    We predict a novel nonlinear electromagnetic phenomenon in layered superconducting slabs irradiated from one side by an electromagnetic plane wave. We show that the reflectance and transmittance of the slab can vary over a wide range, from nearly zero to one, when changing the incident wave amplitude. Thus changing the amplitude of the incident wave can induce either the total transmission or reflection of the incident wave. In addition, the dependence of the superconductor transmittance on the incident wave amplitude has an unusual hysteretic behavior with jumps. This remarkable nonlinear effect (self-induced transparency) can be observed even at small amplitudes, when the wave frequency ω\omega is close to the Josephson plasma frequency ωJ\omega_J.Comment: 9 pages, 7 figure

    Surface Josephson plasma waves in layered superconductors

    Full text link
    We predict the existence of surface waves in layered superconductors in the THz frequency range, below the Josephson plasma frequency ωJ\omega_J. This wave propagates along the vacuum-superconductor interface and dampens in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). This is the first prediction of propagating surface waves in any superconductor. These predicted surface Josephson plasma waves are important for different phenomena, including the complete suppression of the specular reflection from a sample (Wood's anomalies) and a huge enhancement of the wave absorption (which can be used as a THz detector).Comment: 4 pages, 2 figure

    Weak and strong measurement of a qubit using a switching-based detector

    Full text link
    We analyze the operation of a switching-based detector that probes a qubit's observable that does not commute with the qubit's Hamiltonian, leading to a nontrivial interplay between the measurement and free-qubit dynamics. In order to obtain analytic results and develop intuitive understanding of the different possible regimes of operation, we use a theoretical model where the detector is a quantum two-level system that is constantly monitored by a macroscopic system. We analyze how to interpret the outcome of the measurement and how the state of the qubit evolves while it is being measured. We find that the answers to the above questions depend on the relation between the different parameters in the problem. In addition to the traditional strong-measurement regime, we identify a number of regimes associated with weak qubit-detector coupling. An incoherent detector whose switching time is measurable with high accuracy can provide high-fidelity information, but the measurement basis is determined only upon switching of the detector. An incoherent detector whose switching time can be known only with low accuracy provides a measurement in the qubit's energy eigenbasis with reduced measurement fidelity. A coherent detector measures the qubit in its energy eigenbasis and, under certain conditions, can provide high-fidelity information.Comment: 20 pages (two-column), 6 figure
    • …
    corecore