233 research outputs found

    An X-Ray Induced Structural Transition in La_0.875Sr_0.125MnO_3

    Full text link
    We report a synchrotron x-ray scattering study of the magnetoresistive manganite La_0.875Sr_0.125MnO_3. At low temperatures, this material undergoes an x-ray induced structural transition at which charge ordering of Mn^3+ and Mn^4+ ions characteristic to the low-temperature state of this compound is destroyed. The transition is persistent but the charge-ordered state can be restored by heating above the charge-ordering transition temperature and subsequently cooling. The charge-ordering diffraction peaks, which are broadened at all temperatures, broaden more upon x-ray irradiation, indicating the finite correlation length of the charge-ordered state. Together with the recent reports on x-ray induced transitions in Pr_(1-x)Ca_xMnO_3, our results demonstrate that the photoinduced structural change is a common property of the charge-ordered perovskite manganites.Comment: 5 pages, 4 embedded EPS figures; significant changes in the data analysis mad

    Temperature-dependent properties of the magnetic order in single-crystal BiFeO3

    Full text link
    We report neutron diffraction and magnetization studies of the magnetic order in multiferroic BiFeO3. In ferroelectric monodomain single crystals, there are three magnetic cycloidal domains with propagation vectors equivalent by crystallographic symmetry. The cycloid period slowly grows with increasing temperature. The magnetic domain populations do not change with temperature except in the close vicinity of the N{\P}eel temperature, at which, in addition, a small jump in magneti- zation is observed. No evidence for the spin-reorientation transitions proposed in previous Raman and dielectric studies is found. The magnetic cycloid is slightly anharmonic for T=5 K. The an- harmonicity is much smaller than previously reported in NMR studies. At room temperature, a circular cycloid is observed, within errors. We argue that the observed anharmonicity provides important clues for understanding electromagnons in BiFeO3.Comment: In Press at PR

    On the soliton width in the incommensurate phase of spin-Peierls systems

    Full text link
    We study using bosonization techniques the effects of frustration due to competing interactions and of the interchain elastic couplings on the soliton width and soliton structure in spin-Peierls systems. We compare the predictions of this study with numerical results obtained by exact diagonalization of finite chains. We conclude that frustration produces in general a reduction of the soliton width while the interchain elastic coupling increases it. We discuss these results in connection with recent measurements of the soliton width in the incommensurate phase of CuGeO_3.Comment: 4 pages, latex, 2 figures embedded in the tex

    Persistent X-Ray Photoconductivity and Percolation of Metallic Clusters in Charge-Ordered Manganites

    Full text link
    Charge-ordered manganites of composition Pr1x(Ca1ySry)xMnO3\rm Pr_{1-x}(Ca_{1-y}Sr_{y})_{x}MnO_3 exhibit persistent photoconductivity upon exposure to x-rays. This is not always accompanied by a significant increase in the {\it number} of conduction electrons as predicted by conventional models of persistent photoconductivity. An analysis of the x-ray diffraction patterns and current-voltage characteristics shows that x-ray illumination results in a microscopically phase separated state in which charge-ordered insulating regions provide barriers against charge transport between metallic clusters. The dominant effect of x-ray illumination is to enhance the electron {\it mobility} by lowering or removing these barriers. A mechanism based on magnetic degrees of freedom is proposed.Comment: 8 pages, 4 figure

    Field-induced structural evolution in the spin-Peierls compound CuGeO3_3: high-field ESR study

    Get PDF
    The dimerized-incommensurate phase transition in the spin-Peierls compound CuGeO3_3 is probed using multifrequency high-resolution electron spin resonance (ESR) technique, in magnetic fields up to 17 T. A field-induced development of the soliton-like incommensurate superstructure is clearly indicated as a pronounced increase of the ESR linewidth ΔB\Delta B (magnon excitations), with a ΔBmax\Delta B_{max} at BcB_{c}\sim 13.8 T. The anomaly is explained in terms of the magnon-soliton scattering, and suggests that the soliton-like phase exists close to the boundary of the dimerized-incommensurate phase transition. In addition, magnetic excitation spectra in 0.8% Si-doped CuGeO3_3 are studied. Suppression of the ΔB\Delta B anomaly observed in the doped samples suggests a collapse of the long-range-ordered soliton states upon doping, that is consistent with high-field neutron scattering experiments.Comment: Accepted to Phys. Rev.

    Domain excitations in spin-Peierls systems

    Full text link
    We study a model of a Spin-Peierls material consisting of a set of antiferromagnetic Heisenberg chains coupled with phonons and interacting among them via an inter-chain elastic coupling. The excitation spectrum is analyzed by bosonization techniques and the self-harmonic approximation. The elementary excitation is the creation of a localized domain structure where the dimerized order is the opposite to the one of the surroundings. It is a triplet excitation whose formation energy is smaller than the magnon gap. Magnetic internal excitations of the domain are possible and give the further excitations of the system. We discuss these results in the context of recent experimental measurements on the inorganic Spin-Peierls compound CuGeO3_3Comment: 5 pages, 2 figures, corrected version to appear in Phys. Rev.

    The first-order phase transition between dimerized-antiferromagnetic and uniform-antiferromagnetic phases in Cu_(1-x)M_xGeO_3

    Full text link
    We have performed detailed magnetic susceptibility measurements as well as synchrotron x-ray diffraction studies to determine the temperature vs concentration (TT - xx) phase diagram of Cu1x{}_{1-x}Mgx{}_xGeO3{}_3. We observe clear double peaks in the magnetic susceptibility implying two antiferromagnetic (AF) transition temperatures in samples with Mg concentrations in the range 0.0237 x\le x \le 0.0271. We also observe a drastic change in the inverse correlation length in this concentration range by x-ray diffraction. The drastic change of the AF transition temperature as well as the disappearance of the spin-Peierls (SP) phase have been clarified; these results are consistent with a first-order phase transition between dimerized AF (D-AF) and uniform AF (U-AF) phases as reported by T. Masuda {\it et al.} \lbrack Phys. Rev. Lett. {\bf 80}, 4566 (1998)\rbrack. The TT - xx phase diagram of Cu1x{}_{1-x}Znx{}_xGeO3{}_3 is similar to that of Cu1x{}_{1-x}Mgx{}_xGeO3{}_3, which suggests that the present phase transition is universal for Cu1xMx{}_{1-x}M_{x}GeO3{}_3.Comment: 7 pages, 5 figures. submitted to PR

    Multiphase segregation and metal-insulator transition in single crystal La(5/8-y)Pr(y)Ca(3/8)MnO3

    Full text link
    The insulator-metal transition in single crystal La(5/8-y)Pr(y)Ca(3/8)MnO3 with y=0.35 was studied using synchrotron x-ray diffraction, electric resistivity, magnetic susceptibility, and specific heat measurements. Despite the dramatic drop in the resistivity at the insulator-metal transition temperature Tmi, the charge-ordering (CO) peaks exhibit no anomaly at this temperature and continue to grow below Tmi. Our data suggest then, that in addition to the CO phase, another insulating phase is present below Tco. In this picture, the insulator-metal transition is due to the changes within this latter phase. The CO phase does not appear to play a major role in this transition. We propose that a percolation-like insulator-metal transition occurs via the growth of ferromagnetic metallic domains within the parts of the sample that do not exhibit charge ordering. Finally, we find that the low-temperature phase-separated state is unstable against x-ray irradiation, which destroys the CO phase at low temperatures.Comment: 9 pages, 9 encapsulated eps figure

    Martensitic accommodation strain and the metal-insulator transition in manganites

    Full text link
    In this paper, we report polarized optical microscopy and electrical transport studies of manganese oxides that reveal that the charge ordering transition in these compounds exhibits typical signatures of a martensitic transformation. We demonstrate that specific electronic properties of charge-ordered manganites stem from a combination of martensitic accommodation strain and effects of strong electron correlations. This intrinsic strain is strongly affected by the grain boundaries in ceramic samples. Consistently, our studies show a remarkable enhancement of low field magnetoresistance and the grain size effect on the resistivity in polycrystalline samples and suggest that the transport properties of this class of manganites are governed by the charge-disordered insulating phase stabilized at low temperature by virtue of martensitic accommodation strain. High sensitivity of this phase to strains and magnetic field leads to a variety of striking phenomena, such as unusually high magnetoresistance (10^10 %) in low magnetic fields.Comment: Short paper, 4 figures, to appear in Rapid Communicatio
    corecore