184 research outputs found
Time-odd mean fields in the rotating frame: microscopic nature of nuclear magnetism
The microscopic role of nuclear magnetism in rotating frame is investigated
for the first time in the framework of the cranked relativistic mean field
theory. It is shown that nuclear magnetism modifies the expectation values of
single-particle spin, orbital and total angular momenta along the rotational
axis effectively creating additional angular momentum. This effect leads to the
increase of kinematic and dynamic moments of inertia at given rotational
frequency and has an impact on effective alignments.Comment: 16 pages, 4 figures, submitted to Physical Review
Superdeformation and hyperdeformation in the Cd nucleus
The superdeformation and hyperdeformation in Cd have been studied for
the first time within the framework of the fully self-consistent cranked mean
field theory, namely, cranked relativistic mean field theory. The structure of
observed superdeformed bands 1 and 2 have been analyzed in detail. The bumps
seen in their dynamic moments of inertia are explained as arising from unpaired
band crossings. This is contrary to an explanation given earlier within the
framework of projected shell model. It was also concluded that this nucleus is
not doubly magic SD nucleus
Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals
We calculate properties of the ground and excited states of nuclei in the
nobelium region for proton and neutron numbers of 92 <= Z <= 104 and 144 <= N
<= 156, respectively. We use three different energy-density-functional (EDF)
approaches, based on covariant, Skyrme, and Gogny functionals, each within two
different parameter sets. A comparative analysis of the results obtained for
odd-even mass staggerings, quasiparticle spectra, and moments of inertia allows
us to identify single-particle and shell effects that are characteristic to
these different models and to illustrate possible systematic uncertainties
related to using the EDF modellingComment: 43 LaTeX pages, 14 figures, accepted in Nuclear Physics A, Special
Issue on Superheavy Element
Time-odd mean fields in covariant density functional theory I. Non-rotating systems
Time-odd mean fields (nuclear magnetism) are analyzed in the framework of
covariant density functional theory (CDFT). It is shown that they always
provide additional binding to the binding energies of odd-mass nuclei. This
additional binding only weakly depends on the RMF parametrization reflecting
good localization of the properties of time-odd mean fields in CDFT. The
underlying microscopic mechanism is discussed in detail. Time-odd mean fields
affect odd-even mass differences. However, our analysis suggests that the
modifications of the strength of pairing correlations required to compensate
for their effects are modest. In contrast, time-odd mean fields have profound
effect on the properties of odd-proton nuclei in the vicinity of proton-drip
line. Their presence can modify the half-lives of proton-emitters (by many
orders of magnitude in light nuclei) and affect considerably the possibilities
of their experimental observation.Comment: 20 pages, 19 figure
Fission barriers in covariant density functional theory: extrapolation to superheavy nuclei
Systematic calculations of fission barriers allowing for triaxial deformation
are performed for even-even superheavy nuclei with charge number
using three classes of covariant density functional models. The softness of
nuclei in the triaxial plane leads to an emergence of several competing fission
pathes in the region of the inner fission barrier in some of these nuclei. The
outer fission barriers are considerably affected by triaxiality and octupole
deformation. General trends of the evolution of the inner and the outer fission
barrier heights are discussed as a function of the particle numbers.Comment: 24 pages, 8 tables, 12 figure
Ultra-short solitons and kinetic effects in nonlinear metamaterials
We present a stability analysis of a modified nonlinear Schroedinger equation
describing the propagation of ultra-short pulses in negative refractive index
media. Moreover, using methods of quantum statistics, we derive a kinetic
equation for the pulses, making it possible to analyze and describe partial
coherence in metamaterials. It is shown that a novel short pulse soliton, which
is found analytically, can propagate in the medium.Comment: 6 pages, 2 figures, to appear in Phys. Rev.
Moments of Inertia of Nuclei in the Rare Earth Region: A Relativistic versus Non-Relativistic Investigation
A parameter free investigation of the moments of inertia of ground state
rotational bands in well deformed rare-earth nuclei is carried out using
Cranked Relativistic Hartree-Bogoliubov (CRHB) and non-relativistic Cranked
Hartree-Fock-Bogoliubov (CHFB) theories. In CRHB theory, the relativistic
fields are determined by the non-linear Lagrangian with the NL1 force and the
pairing interaction by the central part of finite range Gogny D1S force. In
CHFB theory, the properties in particle-hole and particle-particle channels are
defined solely by Gogny D1S forces. Using an approximate particle number
projection before variation by means of the Lipkin Nogami method improves the
agreement with the experimental data, especially in CRHB theory. The effect of
the particle number projection on the moments of inertia and pairing energies
is larger in relativistic than in non-relativistic theory.Comment: 18 pages + 2 PostScript figure
Spectroscopy of the heaviest nuclei (theory)
Recent progress in the applications of covariant density functional theory
(CDFT) to the description of the spectroscopy of the heaviest nuclei is
reviewed. The analysis of quasiparticle spectra in actinides and the heaviest A
~ 250 nuclei provides a measure of the accuracy of the description of
single-particle energies in CDFT and an additional constraint for the choice of
effective interactions for the description of superheavy nuclei. The response
of these nuclei to the rotation is rather well described by cranked
relativistic Hartree+Bogoliubov theory and it serves as a supplementary tool in
configuration assignment in odd-mass nuclei. A systematic analysis of the
fission barriers with allowance for triaxial deformation shows that covariant
density functional theory is able to describe fission barriers on a level of
accuracy comparable with the best phenomenological macroscopic+microscopic
approaches.Comment: 10 pages, 7 figures, invited talk of A.V. Afanasjev at the
International Nuclear Physics Conference (INPC 2010), Vancouver, Canada, July
4-9, 2010, to be published in Journal of Physics G: Conference Series (JPCS
- …