184 research outputs found

    Time-odd mean fields in the rotating frame: microscopic nature of nuclear magnetism

    Full text link
    The microscopic role of nuclear magnetism in rotating frame is investigated for the first time in the framework of the cranked relativistic mean field theory. It is shown that nuclear magnetism modifies the expectation values of single-particle spin, orbital and total angular momenta along the rotational axis effectively creating additional angular momentum. This effect leads to the increase of kinematic and dynamic moments of inertia at given rotational frequency and has an impact on effective alignments.Comment: 16 pages, 4 figures, submitted to Physical Review

    Superdeformation and hyperdeformation in the 108^{108}Cd nucleus

    Full text link
    The superdeformation and hyperdeformation in 108^{108}Cd have been studied for the first time within the framework of the fully self-consistent cranked mean field theory, namely, cranked relativistic mean field theory. The structure of observed superdeformed bands 1 and 2 have been analyzed in detail. The bumps seen in their dynamic moments of inertia are explained as arising from unpaired band crossings. This is contrary to an explanation given earlier within the framework of projected shell model. It was also concluded that this nucleus is not doubly magic SD nucleus

    Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functionals

    Full text link
    We calculate properties of the ground and excited states of nuclei in the nobelium region for proton and neutron numbers of 92 <= Z <= 104 and 144 <= N <= 156, respectively. We use three different energy-density-functional (EDF) approaches, based on covariant, Skyrme, and Gogny functionals, each within two different parameter sets. A comparative analysis of the results obtained for odd-even mass staggerings, quasiparticle spectra, and moments of inertia allows us to identify single-particle and shell effects that are characteristic to these different models and to illustrate possible systematic uncertainties related to using the EDF modellingComment: 43 LaTeX pages, 14 figures, accepted in Nuclear Physics A, Special Issue on Superheavy Element

    Time-odd mean fields in covariant density functional theory I. Non-rotating systems

    Full text link
    Time-odd mean fields (nuclear magnetism) are analyzed in the framework of covariant density functional theory (CDFT). It is shown that they always provide additional binding to the binding energies of odd-mass nuclei. This additional binding only weakly depends on the RMF parametrization reflecting good localization of the properties of time-odd mean fields in CDFT. The underlying microscopic mechanism is discussed in detail. Time-odd mean fields affect odd-even mass differences. However, our analysis suggests that the modifications of the strength of pairing correlations required to compensate for their effects are modest. In contrast, time-odd mean fields have profound effect on the properties of odd-proton nuclei in the vicinity of proton-drip line. Their presence can modify the half-lives of proton-emitters (by many orders of magnitude in light nuclei) and affect considerably the possibilities of their experimental observation.Comment: 20 pages, 19 figure

    Fission barriers in covariant density functional theory: extrapolation to superheavy nuclei

    Full text link
    Systematic calculations of fission barriers allowing for triaxial deformation are performed for even-even superheavy nuclei with charge number Z=112120Z=112-120 using three classes of covariant density functional models. The softness of nuclei in the triaxial plane leads to an emergence of several competing fission pathes in the region of the inner fission barrier in some of these nuclei. The outer fission barriers are considerably affected by triaxiality and octupole deformation. General trends of the evolution of the inner and the outer fission barrier heights are discussed as a function of the particle numbers.Comment: 24 pages, 8 tables, 12 figure

    Ultra-short solitons and kinetic effects in nonlinear metamaterials

    Full text link
    We present a stability analysis of a modified nonlinear Schroedinger equation describing the propagation of ultra-short pulses in negative refractive index media. Moreover, using methods of quantum statistics, we derive a kinetic equation for the pulses, making it possible to analyze and describe partial coherence in metamaterials. It is shown that a novel short pulse soliton, which is found analytically, can propagate in the medium.Comment: 6 pages, 2 figures, to appear in Phys. Rev.

    Moments of Inertia of Nuclei in the Rare Earth Region: A Relativistic versus Non-Relativistic Investigation

    Full text link
    A parameter free investigation of the moments of inertia of ground state rotational bands in well deformed rare-earth nuclei is carried out using Cranked Relativistic Hartree-Bogoliubov (CRHB) and non-relativistic Cranked Hartree-Fock-Bogoliubov (CHFB) theories. In CRHB theory, the relativistic fields are determined by the non-linear Lagrangian with the NL1 force and the pairing interaction by the central part of finite range Gogny D1S force. In CHFB theory, the properties in particle-hole and particle-particle channels are defined solely by Gogny D1S forces. Using an approximate particle number projection before variation by means of the Lipkin Nogami method improves the agreement with the experimental data, especially in CRHB theory. The effect of the particle number projection on the moments of inertia and pairing energies is larger in relativistic than in non-relativistic theory.Comment: 18 pages + 2 PostScript figure

    Spectroscopy of the heaviest nuclei (theory)

    Full text link
    Recent progress in the applications of covariant density functional theory (CDFT) to the description of the spectroscopy of the heaviest nuclei is reviewed. The analysis of quasiparticle spectra in actinides and the heaviest A ~ 250 nuclei provides a measure of the accuracy of the description of single-particle energies in CDFT and an additional constraint for the choice of effective interactions for the description of superheavy nuclei. The response of these nuclei to the rotation is rather well described by cranked relativistic Hartree+Bogoliubov theory and it serves as a supplementary tool in configuration assignment in odd-mass nuclei. A systematic analysis of the fission barriers with allowance for triaxial deformation shows that covariant density functional theory is able to describe fission barriers on a level of accuracy comparable with the best phenomenological macroscopic+microscopic approaches.Comment: 10 pages, 7 figures, invited talk of A.V. Afanasjev at the International Nuclear Physics Conference (INPC 2010), Vancouver, Canada, July 4-9, 2010, to be published in Journal of Physics G: Conference Series (JPCS
    corecore