159 research outputs found
Real-time single-molecule imaging reveals a direct interaction between UvrC and UvrB on DNA tightropes
Nucleotide excision DNA repair is mechanistically conserved across all kingdoms of life. In prokaryotes, this multi-enzyme process requires six proteins: UvrA?D, DNA polymerase I and DNA ligase. To examine how UvrC locates the UvrB? DNA pre-incision complex at a site of damage, we have labeled UvrB and UvrC with different colored quantum dots and quantitatively observed their interactions with DNA tightropes under a variety of solution conditions using oblique angle fluorescence imaging. Alone, UvrC predominantly interacts statically with DNA at low salt. Surprisingly, however, UvrC and UvrB together in solution bind to form the previously unseen UvrBC complex on duplex DNA. This UvrBC complex is highly motile and engages in unbiased one-dimensional diffusion. To test whether UvrB makes direct contact with the DNA in the UvrBC?DNA complex, we investigated three UvrB mutants: Y96A, a b-hairpin deletion and D338N. These mutants affected the motile properties of the UvrBC complex, indicating that UvrB is in intimate contact with the DNA when bound to UvrC. Given the in vivo excess of UvrB and the abundance of UvrBC in our experiments, this newly identified complex is likely to be the predominant form of UvrC in the cell. © 2013 The Author(s)
Acinetobacter baumannii in the critically ill: complex infections get complicated
Acinetobacter baumannii is increasingly associated with various epidemics, representing a serious concern due to the broad level of antimicrobial resistance and clinical manifestations. During the last decades, A. baumannii has emerged as a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, urinary tract, and skin and soft tissue infections are the most common presentations of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems have been considered the first choice to treat A. baumannii infections. However, due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), colistin represents the main therapeutic option, while the role of the new siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, high clinical failure rates have been reported for colistin monotherapy when used to treat CRAB infections. Thus, the most effective antibiotic combination remains disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is also known to form biofilm on medical devices, including central venous catheters or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains in multidrug-resistant populations of A. baumannii poses a significant treatment challenge. This review provides an updated account of antimicrobial resistance patterns and biofilm-mediated tolerance in A. baumannii infections with a special focus on fragile and critically ill patients
Efficient processing of TFO-directed psoralen DNA interstrand crosslinks by the UvrABC nuclease
Photoreactive psoralens can form interstrand crosslinks (ICLs) in double-stranded DNA. In eubacteria, the endonuclease UvrABC plays a key role in processing psoralen ICLs. Psoralen-modified triplex-forming oligonucleotides (TFOs) can be used to direct ICLs to specific genomic sites. Previous studies of pyrimidine-rich methoxypsoralen–modified TFOs indicated that the TFO inhibits cleavage by UvrABC. Because different chemistries may alter the processing of TFO-directed ICLs, we investigated the effect of another type of triplex formed by purine-rich TFOs on the processing of 4′-(hydroxymethyl)-4,5′,8-trimethylpsoralen (HMT) ICLs by the UvrABC nuclease. Using an HMT-modified TFO to direct ICLs to a specific site, we found that UvrABC made incisions on the purine-rich strand of the duplex ∼3 bases from the 3′-side and ∼9 bases from the 5′-side of the ICL, within the TFO-binding region. In contrast to previous reports, the UvrABC nuclease cleaved the TFO-directed psoralen ICL with a greater efficiency than that of the psoralen ICL alone. Furthermore, the TFO was dissociated from its duplex binding site by UvrA and UvrB. As mutagenesis by TFO-directed ICLs requires nucleotide excision repair, the efficient processing of these lesions supports the use of triplex technology to direct DNA damage for genome modification
Teaching Third-Year Medical Students to Address Patients’ Spiritual Needs in the Surgery/Anesthesiology Clerkship
Introduction: Despite many patients wanting physicians to inquire about their religious/spiritual beliefs, most physicians do not make such inquiries. Among physicians who do, surgeons are less likely than family and general practitioners and psychiatrists to do so.
Methods: To address this gap, we developed a 60-minute curriculum that follows the Kolb cycle of experiential learning for third-year medical students on their surgery/anesthesiology clerkship. The session includes definitions of religion/spirituality, an overview of the literature on spirituality in surgery, a review of the FICA Spiritual History Tool, discussion of the role of the chaplain and the process of initiating a chaplain consult, and three cases regarding the spiritual needs of surgical patients.
Results: In total, 165 students participated in 10 sessions over 13 months. Of these, 120 students (73%) provided short-term feedback. Overall, 82% rated the session above average or excellent, and 72% stated the session was very relevant to patient care. To improve the session, students recommended assigning key readings, discussing more cases, role-playing various scenarios, inviting patients to speak, practicing mock interviews, and allowing for more self-reflection and discussion. Long- term feedback was provided by 105 students (64%) and indicated that the spirituality session impacted their attitudes about the role of religion/spirituality in medicine and their behaviors with patients.
Discussion: We have designed a successful session on spirituality for third-year students on their surgery/anesthesiology clerkship. Students reported it to be a positive addition to the curriculum. The session can be modified for other surgical subspecialties and specialties outside of surgery
Loss of ATP2C1 function promotes trafficking and degradation of NOTCH1: Implications for Hailey-Hailey disease
Hailey-Hailey disease (HHD) is a rare autosomal dominantly inherited disorder caused by mutations in the ATP2C1 gene that encodes an adenosine triphosphate (ATP)-powered calcium channel pump. HHD is characterized by impaired epidermal cell-to-cell adhesion and defective keratinocyte growth/differentiation. The mechanism by which mutant ATP2C1 causes HHD is unknown and current treatments for affected individuals do not address the underlying defects and are ineffective. Notch signalling is a direct determinant of keratinocyte growth and differentiation. We found that loss of ATP2C1 leads to impaired Notch1 signalling, thus deregulation of the Notch signalling response is therefore likely to contribute to HHD manifestation. NOTCH1 is a transmembrane receptor and upon ligand binding, the intracellular domain (NICD) translocates to the nucleus activating its target genes. In the context of HHD, we found that loss of ATP2C1 function promotes upregulation of the active NOTCH1 protein (NICD-Val1744). Here, deeply exploring this aspect, we observed that NOTCH1 activation is not associated with the transcriptional enhancement of its targets. Moreover, in agreement with these results, we found a cytoplasmic localization of NICD-Val1744. We have also observed that ATP2C1-loss is associated with the degradation of NICD-Val1744 through the lysosomal/proteasome pathway. These results show that ATP2C1-loss could promote a mechanism by which NOTCH1 is endocytosed and degraded by the cell membrane. The deregulation of this phenomenon, finely regulated in physiological conditions, could in HHD lead to the deregulation of NOTCH1 with alteration of skin homeostasis and disease manifestation
Herramienta de modelado y análisis estocástico de sistemas biológicos
Los sistemas híbridos cuentan con la atención de gran parte de la comunidad científica por lo atractivo del estudio de sus dinámicas, las continuas y las discretas, y la comprensión de sus interacciones. Entre las más comunes se encuentran aquellas que cambian de estado entre diferentes procesos continuos. También se pueden encontrar formas de interacción que incluyen transiciones discretas supeditadas a evoluciones continuas, u otras como resultados de una decisión, o por la ocurrencia de determinados eventos.
El estudio de la distribución probabilísticas de la dinámica discreta y la continua se lleva a cavo por medio del análisis del sistema híbrido estocástico (SHE) que lo modela.
Debido a que el modelo numérico, de un SH, es afectado por el problema de la explosión de estados y de ser sumamente exigente en lo que a recursos se refiere, aparece como una opción aceptable la formulación del mismo sistema por medio de un SHP.
Estos tipos de sistemas pueden ser analizados por medio de herramientas informáticas con solida base matemática como son los Model Checkers Probabilísticos.
Los sistemas biológicos encuadran perfectamente en la clasificación de SHE.
En el ámbito de estudio de SB no se cuenta con herramientas que permitan una traducción directa de un SHE, como por ejemplo un sistema de reacciones, a un modelo estocástico factible de ser analizado por herramientas informáticas disponibles en la actualidad como son los model checkers antes mencionados.
En nuestra línea de investigación proponemos el estudio de factibilidad y de propuesta de desarrollo de una herramienta de análisis de SB basado en su formulación estocástica.
Tenemos como hipótesis de trabajo que el desarrollo de este prototipo de herramienta que permite la obtención de un modelo estocástico a partir de su formulación por medio de reacciones que permitirá analizar el sistema e incrementar la productividad en el estudio de SBs habilitando a su verificación y validación con herramientas novedosas en el área biológica. En una primera etapa se centrará en la obtención de modelos estocásticos de un sistema de reacciones para luego habilitar el análisis basado en probabilidades y en simulaciones probabilísticas basadas en su semántica estocástica.Eje: Innovación en Sistemas de Software.Red de Universidades con Carreras en Informática (RedUNCI
Hpy188I–DNA pre- and post-cleavage complexes—snapshots of the GIY-YIG nuclease mediated catalysis
The GIY-YIG nuclease domain is present in all kingdoms of life and has diverse functions. It is found in the eukaryotic flap endonuclease and Holliday junction resolvase Slx1–Slx4, the prokaryotic nucleotide excision repair proteins UvrC and Cho, and in proteins of ‘selfish’ genetic elements. Here we present the structures of the ternary pre- and post-cleavage complexes of the type II GIY-YIG restriction endonuclease Hpy188I with DNA and a surrogate or catalytic metal ion, respectively. Our structures suggest that GIY-YIG nucleases catalyze DNA hydrolysis by a single substitution reaction. They are consistent with a previous proposal that a tyrosine residue (which we expect to occur in its phenolate form) acts as a general base for the attacking water molecule. In contrast to the earlier proposal, our data identify the general base with the GIY and not the YIG tyrosine. A conserved glutamate residue (Glu149 provided in trans in Hpy188I) anchors a single metal cation in the active site. This metal ion contacts the phosphate proS oxygen atom and the leaving group 3′-oxygen atom, presumably to facilitate its departure. Taken together, our data reveal striking analogy in the absence of homology between GIY-YIG and ββα-Me nucleases
Inhibition of BACH1 (FANCJ) helicase by backbone discontinuity is overcome by increased motor ATPase or length of loading strand
The BRCA1 associated C-terminal helicase (BACH1) associated with breast cancer has been implicated in double strand break (DSB) repair. More recently, BACH1 (FANCJ) has been genetically linked to the chromosomal instability disorder Fanconi Anemia (FA). Understanding the roles of BACH1 in cellular DNA metabolism and how BACH1 dysfunction leads to tumorigenesis requires a comprehensive investigation of its catalytic mechanism and molecular functions in DNA repair. In this study, we have determined that BACH1 helicase contacts with both the translocating and the non-translocating strands of the duplex are critical for its ability to track along the sugar phosphate backbone and unwind dsDNA. An increased motor ATPase of a BACH1 helicase domain variant (M299I) enabled the helicase to unwind the backbone-modified DNA substrate in a more proficient manner. Alternatively, increasing the length of the 5′ tail of the DNA substrate allowed BACH1 to overcome the backbone discontinuity, suggesting that BACH1 loading mechanism is critical for its ability to unwind damaged DNA molecules
Multi-Locus Next-Generation Sequence Typing of DNA Extracted From Pooled Colonies Detects Multiple Unrelated Candida albicans Strains in a Significant Proportion of Patient Samples
The yeast Candida albicans is an important opportunistic human pathogen. For C. albicans strain typing or drug susceptibility testing, a single colony recovered from a patient sample is normally used. This is insufficient when multiple strains are present at the site sampled. How often this is the case is unclear. Previous studies, confined to oral, vaginal and vulvar samples, have yielded conflicting results and have assessed too small a number of colonies per sample to reliably detect the presence of multiple strains. We developed a next-generation sequencing (NGS) modification of the highly discriminatory C. albicans MLST (multilocus sequence typing) method, 100+1 NGS-MLST, for detection and typing of multiple strains in clinical samples. In 100+1 NGS-MLST, DNA is extracted from a pool of colonies from a patient sample and also from one of the colonies. MLST amplicons from both DNA preparations are analyzed by high-throughput sequencing. Using base call frequencies, our bespoke DALMATIONS software determines the MLST type of the single colony. If base call frequency differences between pool and single colony indicate the presence of an additional strain, the differences are used to computationally infer the second MLST type without the need for MLST of additional individual colonies. In mixes of previously typed pairs of strains, 100+1 NGS-MLST reliably detected a second strain. Inferred MLST types of second strains were always more similar to their real MLST types than to those of any of 59 other isolates (22 of 31 inferred types were identical to the real type). Using 100+1 NGS-MLST we found that 7/60 human samples, including three superficial candidiasis samples, contained two unrelated strains. In addition, at least one sample contained two highly similar variants of the same strain. The probability of samples containing unrelated strains appears to differ considerably between body sites. Our findings indicate the need for wider surveys to determine if, for some types of samples, routine testing for the presence of multiple strains is warranted. 100+1 NGS-MLST is effective for this purpose
Conformational and thermodynamic properties modulate the nucleotide excision repair of 2-aminofluorene and 2-acetylaminofluorene dG adducts in the NarI sequence
Nucleotide excision repair (NER) is a major repair pathway that recognizes and corrects various lesions in cellular DNA. We hypothesize that damage recognition is an initial step in NER that senses conformational anomalies in the DNA caused by lesions. We prepared three DNA duplexes containing the carcinogen adduct N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-acetylaminofluorene (FAAF) at G1, G2 or G3 of NarI sequence (5′-CCG1G2CG3CC-3′). Our 19F-NMR/ICD results showed that FAAF at G1 and G3 prefer syn S- and W-conformers, whereas anti B-conformer was predominant for G2. We found that the repair of FAAF occurs in a conformation-specific manner, i.e. the highly S/W-conformeric G3 and -G1 duplexes incised more efficiently than the B-type G2 duplex (G3∼G1 > G2). The melting and thermodynamic data indicate that the S- and W-conformers produce greater DNA distortion and thermodynamic destabilization. The N-deacetylated N-(2′-deoxyguanosin-8-yl)-7-fluoro-2-aminofluorene (FAF) adducts in the same NarI sequence are repaired 2- to 3-fold less than FAAF: however, the incision efficiency was in order of G2∼G1 > G3, a reverse trend of the FAAF case. We have envisioned the so-called N-acetyl factor as it could raise conformational barriers of FAAF versus FAF. The present results provide valuable conformational insight into the sequence-dependent UvrABC incisions of the bulky aminofluorene DNA adducts
- …