2 research outputs found

    DEVELOPMENT OF PASTERIZATION MODES FOR HIGH-SUGAR CANS IN CONTINUOUS ACTING PASTEURIZERS

    Get PDF
    High-sugar canned fruits, such as jam, marmalade, confiture, are characterized by a high content of soluble dry solids and high acidity, which allows to apply to them pasteurization processes as heat treatment. In comparison with sterilization processes, heat treatment of hermetically sealed canned food during pasteurization is implemented at temperatures less than 100°C.The article presents the results of the development of scientifically-based pasteurization modes for high-sugar canned food for industrial continuous-acting pasteurizers (CAP — continuous-acting pasteurizers) of open type with a temperature in the heating area less than 100°C. For today, such pasteurizers are widely spread due to the simplicity of their design, high productivity, with the option to reduce consumption of water, steam, electricity and to use it for the various types of packaging. So, the actual task of this article is the establishment of canned fruit pasteurization modes for such pasteurizers.The development of pasteurization modes for high-sugar canned food using strawberry jam as a sample was carried out in the experimental equipment simulating the operation of a continuous-acting pasteurizer. The studies were implemented to confirm that the developed modes of heat treatment in the CAP as a matter of fact provide industrial sterility of the produced high-sugar canned food. Optimal pasteurization modes have the following parameters: heat treatment in an autoclave sterilizer at a heating temperature of the heating medium 97°C and stage-by-stage cooling of the products with water at temperatures 70°C, 50°C and 30°C.High-sugar canned fruits, such as jam, marmalade, confiture, are characterized by a high content of soluble dry solids and high acidity, which allows to apply to them pasteurization processes as heat treatment. In comparison with sterilization processes, heat treatment of hermetically sealed canned food during pasteurization is implemented at temperatures less than 100°C.The article presents the results of the development of scientifically-based pasteurization modes for high-sugar canned food for industrial continuous-acting pasteurizers (CAP — continuous-acting pasteurizers) of open type with a temperature in the heating area less than 100°C. For today, such pasteurizers are widely spread due to the simplicity of their design, high productivity, with the option to reduce consumption of water, steam, electricity and to use it for the various types of packaging. So, the actual task of this article is the establishment of canned fruit pasteurization modes for such pasteurizers.The development of pasteurization modes for high-sugar canned food using strawberry jam as a sample was carried out in the experimental equipment simulating the operation of a continuous-acting pasteurizer. The studies were implemented to confirm that the developed modes of heat treatment in the CAP as a matter of fact provide industrial sterility of the produced high-sugar canned food. Optimal pasteurization modes have the following parameters: heat treatment in an autoclave sterilizer at a heating temperature of the heating medium 97°C and stage-by-stage cooling of the products with water at temperatures 70°C, 50°C and 30°C

    Study of thermal stability of ascospores Aspergillus (Neosartorya) fischeri depending on the concentration of soluble solids in apple juice

    Get PDF
    Kinetic studies of the thermal inactivation of test crop spores are necessary to develop optimal heat treatment regimes for fruit juices. The purpose of the work is to study the dynamics of changes in the thermal stability parameters DT and z depending on changes in the soluble solids content in canned fruit products using the example of certain types of apple juice products with a pH of 3.80. The regularity of thermal inactivation of ascospores of the mesophilic mold Aspergillus fischeri in concentrated apple juice (JAC) with a soluble dry matter (RSV) content of 70%, in restored apple juice with RSV – 11.2%, and in restored apple juice with pulp with RSV – 16% was studied. The parameters of thermal stability were determined by the capillary method at temperatures of 80, 85, 90, and 95 °C. It was experimentally established that the heat resistance of A. fischeri spores in clarified apple juice was DT 95 °С = 0.16 min, and the parameter value z = 6.76 °C, in apple juice with pulp parameters: DT 95 °C = 0.24 min, z – 7.12 °C, in YaKS – DT 95 °C = 0.39 min, and z – 7.8 °C. The dynamics of thermal stability parameters D and z of A. fischeri mold fungus spores (test cultures) versus RSV concentration of juice products was established. The research results showed that with an increase in the concentration of RSV, the thermal stability of spores increases exponentially. The rate of increase in thermal stability decreases with increasing concentration of RSV. Since the concentration of RSV affects the rheological properties of the product (viscosity), this leads to a change in the kinetics of heating in products with convection heat transfer. Therefore, an increase in the concentration of RSV should inevitably lead not only to an increase in the thermal stability of spores of microorganisms, but also to a shift in the region of optimal modes of heat treatment of products toward an increase in the thermal load to ensure regulatory requirements for microbiological safety
    corecore