483 research outputs found
Use of tunable nanopore blockade rates to investigate colloidal dispersions
Tunable nanopores in elastomeric membranes have been used to study the
dependence of ionic current blockade rate on the concentration and
electrophoretic mobility of particles in aqueous suspensions. A range of
nanoparticle sizes, materials and surface functionalities has been tested.
Using pressure-driven flow through a pore, the blockade rate for 100 nm
carboxylated polystyrene particles was found to be linearly proportional to
both transmembrane pressure (controlled between 0 and 1.8 kPa) and particle
concentration (between 7 x 10^8 and 4.5 x 10^10 mL^-1). This result can be
accurately modelled using Nernst-Planck transport theory. Using only an applied
potential across a pore, the blockade rates for carboxylic acid and amine
coated 500 nm and 200 nm silica particles were found to correspond to changes
in their mobility as a function of the solution pH. Scanning electron
microscopy and confocal microscopy have been used to visualise changes in the
tunable nanopore geometry in three dimensions as a function of applied
mechanical strain. The pores observed were conical in shape, and changes in
pore size were consistent with ionic current measurements. A zone of inelastic
deformation adjacent to the pore has been identified as critical in the tuning
process
Geometry dominated fluid adsorption on sculptured substrates
Experimental methods allow the shape and chemical composition of solid
surfaces to be controlled at a mesoscopic level. Exposing such structured
substrates to a gas close to coexistence with its liquid can produce quite
distinct adsorption characteristics compared to that occuring for planar
systems, which may well play an important role in developing technologies such
as super-repellent surfaces or micro-fluidics. Recent studies have concentrated
on adsorption of liquids at rough and heterogeneous substrates and the
characterisation of nanoscopic liquid films. However, the fundamental effect of
geometry has hardly been addressed. Here we show that varying the shape of the
substrate can exert a profound influence on the adsorption isotherms allowing
us to smoothly connect wetting and capillary condensation through a number of
novel and distinct examples of fluid interfacial phenomena. This opens the
possibility of tailoring the adsorption properties of solid substrates by
sculpturing their surface shape.Comment: 6 pages, 4 figure
Universality for 2D Wedge Wetting
We study 2D wedge wetting using a continuum interfacial Hamiltonian model
which is solved by transfer-matrix methods. For arbitrary binding potentials,
we are able to exactly calculate the wedge free-energy and interface height
distribution function and, thus, can completely classify all types of critical
behaviour. We show that critical filling is characterized by strongly universal
fluctuation dominated critical exponents, whilst complete filling is determined
by the geometry rather than fluctuation effects. Related phenomena for
interface depinning from defect lines in the bulk are also considered.Comment: 4 pages, 1 figur
Modified critical correlations close to modulated and rough surfaces
Correlation functions are sensitive to the presence of a boundary. Surface
modulations give rise to modified near surface correlations, which can be
measured by scattering probes. To determine these correlations, we develop a
perturbative calculation in deformations in height from a flat surface. The
results, combined with a renormalization group around four dimensions, are also
used to predict critical behavior near a self-affinely rough surface. We find
that a large enough roughness exponent can modify surface critical behavior.Comment: 4 pages, 1 figure. Revised version as published in Phys. Rev. Lett.
86, 4596 (2001
Correlation functions near Modulated and Rough Surfaces
In a system with long-ranged correlations, the behavior of correlation
functions is sensitive to the presence of a boundary. We show that surface
deformations strongly modify this behavior as compared to a flat surface. The
modified near surface correlations can be measured by scattering probes. To
determine these correlations, we develop a perturbative calculation in the
deformations in height from a flat surface. Detailed results are given for a
regularly patterned surface, as well as for a self-affinely rough surface with
roughness exponent . By combining this perturbative calculation in
height deformations with the field-theoretic renormalization group approach, we
also estimate the values of critical exponents governing the behavior of the
decay of correlation functions near a self-affinely rough surface. We find that
for the interacting theory, a large enough can lead to novel surface
critical behavior. We also provide scaling relations between roughness induced
critical exponents for thermodynamic surface quantities.Comment: 31 pages, 2 figure
Electrochemically controlled growth and positioning of suspended collagen membranes
Two independently recognized in vitro polymer aggregation variables, electric field and pH, can be used in concert to produce suspended membranes from solutions of type I collagen monomers, without need of a supporting substrate. A collagen network film can form at the alkalineacidic pH interface created during the normal course of water electrolysis with parallel plate electrodes, and the anchoring location can be controlled by adjusting the bulk electrolyte pH. Electrosynthesized films remain intact upon drying and rehydration and function as ion separation membranes even in submillimeter channels. This approach could benefit lab-on-a-chip technologies for rational placement of
membranes in microfluidic devices
Creating a Patient-Based Diagnostic Checklist for Functional Tics During the COVID-19 Pandemic
Background and Objectives: Since the onset of the COVID-19 pandemic, there has been a dramatic change in the presentation of patients with tics. The explosive presentation of atypical tics (TT) has been noted worldwide and thought to be the manifestation of a pandemic-associated functional neurologic disorder following social media exposure to tics. Nevertheless, despite the frequent diagnosis of functional tics (FT), there are no existing formal diagnostic criteria. The primary aim of this study was to create a patient-based diagnostic checklist for making the diagnosis of a functional tic disorder (FTD) during the COVID-19 pandemic. Methods: A retrospective chart review at a single institution during the pandemic was performed. Based on the available literature, diagnostic criteria were created for TT, FT, and patients with dramatically evolving symptoms (i.e., mixed with prior history of mild tics with later fulminant functional worsening). Patient demographics, comorbidities, and tic characteristics of these groups were then compared. Following initial assessments, new diagnostic criteria were established and statistically reanalyzed. Results: One hundred ninety-eight patients underwent investigation. Significant differences in age, sex, psychological comorbidities, tic characteristics, and tic severity were found between patients with TT when compared with either of the 2 the functional groups. Only the presence of rostrocaudal progression and increased obsessive-compulsive behaviors were significantly different between patients with new-onset FT and those with functional worsening of a previous tic disorder. Results also showed that age at tic onset was not a contributing factor for group differentiation. Many patients with FT were not exposed to videos depicting tics on social media. Discussion: This study confirms the presence of a distinct presentation of aTT during the pandemic period. It further establishes the validity of specific criteria useful in dividing patients with tics into 3 formal diagnostic criteria: (1) primary tic disorders (PTDs), (2) a strictly FTD, and (3) a mixed tic disorder consisting of patients with an initial history of a PTD and the later development of FT. Explicit diagnostic criteria should enable clinicians and researchers to make a definitive identification and assist patients and families become more knowledgeable and accepting of the diagnosis of FT
- …
