10 research outputs found

    Josephson current in graphene: the role of unconventional pairing symmetries

    Full text link
    We investigate the Josephson current in a graphene superconductor/normal/superconductor junction, where superconductivity is induced by means of the proximity effect from external contacts. We take into account the possibility of anisotropic pairing by also including singlet nearest-neighbor interactions, and investigate how the transport properties are affected by the symmetry of the superconducting order parameter. This corresponds to an extension of the usual on-site interaction assumption, which yields an isotropic s-wave order parameter near the Dirac points. Here, we employ a full numerical solution as well as an analytical treatment, and show how the proximity effect may induce exotic types of superconducting states near the Dirac points, e.g. pxp_x- and pyp_y-wave pairing or a combination of s-wave and p+\i p-wave pairing. We find that the Josephson current exhibits a weakly-damped, oscillatory dependence on the length of the junction when the graphene sheet is strongly doped. The analytical and numerical treatments are found to agree well with each other in the s-wave case when calculating the critical current and current-phase relationship. For the scenarios with anisotropic superconducting pairing, there is a deviation between the two treatments, especially for the effective pxp_x-wave order parameter near the Dirac cones which features zero-energy states at the interfaces. This indicates that a numerical, self-consistent approach becomes necessary when treating anisotropic superconducting pairing in graphene.Comment: 15 pages, 12 figure

    Diagrammatic Quantum Monte Carlo solution of the two-dimensional Cooperon-Fermion model

    Full text link
    We investigate the two-dimensional cooperon-fermion model in the correlated regime with a new continuous-time diagrammatic determinant quantum Monte Carlo (DDQMC) algorithm. We estimate the transition temperature TcT_{c}, examine the effectively reduced band gap and cooperon mass, and find that delocalization of the cooperons enhances the diamagnetism. When applied to diamagnetism of the pseudogap phase in high-TcT_{c} cuprates, we obtain results in a qualitative agreement with recent torque magnetization measurements.Comment: 8 pages, 11 figure

    Considerable enhancement of the critical current in a superconducting film by magnetized magnetic strip

    Full text link
    We show that a magnetic strip on top of a superconducting strip magnetized in a specified direction may considerably enhance the critical current in the sample. At fixed magnetization of the magnet we observed diode effect - the value of the critical current depends on the direction of the transport current. We explain these effects by a influence of the nonuniform magnetic field induced by the magnet on the current distribution in the superconducting strip. The experiment on a hybrid Nb/Co structure confirmed the predicted variation of the critical current with a changing value of magnetization and direction of the transport current.Comment: 6 pages, 7 figure
    corecore