2,573 research outputs found

    Effects of Imprinting and Water Activity on Transesterification and Thermostability with Lipases in Ionic Liquid

    Get PDF
    The effect of bio-imprinting and water activity on catalytic activities and the thermostability of lipases was investigated for transesterification using vinyl acetate and benzyl alcohol as substrates in ionic liquid, [Cnmim][PF6] (n=4,6,8), and benzene. The catalytic activities were enhanced by imprinting in benzene and [C4mim][PF6], and the relations between the transesterification activities and the water activity in both solvents were approximately bell shaped. The reactivity of the transesterification in benzene was higher than that in [C4mim][PF6]. The effects of water activity and imprinting on the kinetic parameters in [C4mim][PF6] were examined. Without controlling the water content, the values of Km,VA and Km,BA (Michaelis constants of vinyl acetate and benzyl alcohol, respectively) decreased, and the values of Vm (maximum rate) increased by imprinting. On the other hand, by controlling the water content in the organic media, the values of Vm, Km,VA, and Km,BA increased by imprinting. The activities of lipase in ionic liquid are more strongly affected by water activity and imprinting than those in benzene. We observed effects of water activity on thermostability but none from imprinting. This work is licensed under a Creative Commons Attribution 4.0 International License

    Superconducting state in the non-centrosymmetric Mg_{9.3}Ir_{19}B_{16.7} and Mg_{10.5}Ir_{19}B_{17.1} revealed by NMR

    Full text link
    We report ^{11}B NMR measurements in non-centrosymmetric superconductors Mg_{9.3}Ir_{19}B_{16.7} (T_c=5.8 K) and Mg_{10.5}Ir_{19}B_{17.1} (T_c=4.8 K). The spin lattice relaxation rate and the Knight shift indicate that the Cooper pairs are predominantly in the spin-singlet state with an isotropic gap. However, Mg_{10.5}Ir_{19}B_{17.1} is found to have more defects and the spin susceptibility remains finite even in the zero-temperature limit. We interpret this result as that the defects enhance the spin-orbit coupling and bring about more spin-triplet component.Comment: for a proper, high-resolution Fig.5, contact the corresponding autho

    Variational Monte Carlo Study of the Kondo Necklace Model with Geometrical Frustration

    Full text link
    We investigate the ground state of the Kondo necklace model on geometrically-frustrated lattices by the variational Monte Carlo simulation. To explore the possibility of a partially-ordered phase, we employ an extension of the Yosida-type wave function as a variational state, which can describe a coexistence of spin-singlet formation due to the Kondo coupling and magnetic ordering by the Ruderman-Kittel-Kasuya-Yosida interaction. We show the benchmark of the numerical simulation to demonstrate the high precision brought by the optimization of a large number of variational parameters. We discuss the ground-state phase diagram for the model on the kagome lattice in comparison with that for the triangular-lattice case.Comment: 3 pages, proceedings for ICHE201

    REBOUND CHARACTORISTICS OF BASEBALL IN DIFFERENT SURFACES

    Get PDF
    INTRODUCTION: In recent years, the number of cases to introduce artificial turf in various fields as sports surface has increased. In Japan, many of stadiums that are the field of professional baseball have adopted artificial turf. In soccer and rugby, the guideline for the field of artificial turf is formulated by these associations. But, such a guideline doesn't exist for baseball stadiums. This research aims to prepare basic data for guideline of the baseball stadium by comparison test between the fifth generation artificial turf, previous generation artificial turf, natural turf, and soil

    Enhanced Esterification Activity and Thermostability of Imprinted Poly(Ethylene Glycol)-Lipase Complex

    Get PDF
    Although the range of applications for enzymatic reactions in organic solvents is rapidly expanding, this study focused on the enzymatic activity in the esterification of lauric acid with benzyl alcohol, and thermostability of lipase using poly(ethylene glycol) (PEG)-lipase complex and molecular imprinting techniques. The catalytic activity was enhanced through molecular imprinting and the PEG-lipase complex. The imprinting operation was particularly effective for catalytic activity after forming the PEG-lipase complex. The kinetic analysis of the lipase-catalyzed esterification revealed that the increase in esterification rate with imprinted lipases was mainly due to the higher maximum rate achieved by the system. The thermostability of the lipases was significantly improved by imprinting at all temperatures (50~70 °C). After forming a PEG-lipase complex, the imprinted lipase exhibited much higher reactivity and thermostability compared to the native lipase and the imprinted PEG-lipase complex
    corecore