57 research outputs found
Hereditary thrombocytosis caused by MPLSer505Asn is associated with a high thrombotic risk, splenomegaly and progression to bone marrow fibrosis.
Background The MPL(Ser505Asn) mutation has been reported to be a cause of hereditary thrombocythemia. Recently, we detected this mutation in a large proportion of children with familial thrombocythemia, suggesting that in Italy the incidence of MPL(Ser505Asn) mutation could be underestimated. DESIGN AND METHODS: We extended the search for this mutation to all patients with essential thrombocythemia who had a positive family history for thrombocytosis or essential thrombocythemia. We identified eight Italian families positive for the MPL(Ser505Asn) mutation. Clinical and hematologic data were available for members of seven families, including 21 patients with a proven mutation and 20 relatives with thrombocytosis. RESULTS: Fifteen major thrombotic episodes, nine of which were fatal, were recorded among 41 patients. The thrombotic manifestation was stroke in four cases, myocardial infarction in seven cases, fetal loss in two cases, deep vein thrombosis of the leg in one case and Budd Chiari syndrome in one case. Almost all patients over 20 years old had splenomegaly and bone marrow fibrosis, while these were rarely observed in patients under 20 years old, suggesting that these manifestations are associated with aging. Finally, the life expectancy of family members with thrombocytosis was significantly shorter than that of members without thrombocytosis (P=0.003). Conclusions Patients with familial thrombocytosis caused by a MPL(Ser505Asn) mutation have a high risk of thrombosis and, with aging, develop splenomegaly and bone marrow fibrosis, significantly affecting their life expectancy
Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies
The myeloproliferative neoplasms (MPNs) are a group of clonal hematological malignancies characterized by a hypercellular bone marrow and a tendency to develop thrombotic complications and to evolve to myelofibrosis and acute leukemia. Unlike chronic myelogenous leukemia, where a single disease-initiating genetic event has been identified, a more complicated series of genetic mutations appear to be responsible for the BCR-ABL1-negative MPNs which include polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Recent studies have revealed a number of epigenetic alterations that also likely contribute to disease pathogenesis and determine clinical outcome. Increasing evidence indicates that alterations in DNA methylation, histone modification, and microRNA expression patterns can collectively influence gene expression and potentially contribute to MPN pathogenesis. Examples include mutations in genes encoding proteins that modify chromatin structure (EZH2, ASXL1, IDH1/2, JAK2V617F, and IKZF1) as well as epigenetic modification of genes critical for cell proliferation and survival (suppressors of cytokine signaling, polycythemia rubra vera-1, CXC chemokine receptor 4, and histone deacetylase (HDAC)). These epigenetic lesions serve as novel targets for experimental therapeutic interventions. Clinical trials are currently underway evaluating HDAC inhibitors and DNA methyltransferase inhibitors for the treatment of patients with MPNs
Association between convalescent plasma treatment and mortality in COVID-19: a collaborative systematic review and meta-analysis of randomized clinical trials.
Funder: laura and john arnold foundationBACKGROUND: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, https://doi.org/10.17605/OSF.IO/GEHFX ). METHODS: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. RESULTS: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. CONCLUSIONS: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care
Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1
Myeloproliferative neoplasms (MPNs) originate from genetically transformed hematopoietic stem cells that retain the capacity for multilineage differentiation and effective myelopoiesis. Beginning in early 2005, a number of novel mutations involving Janus kinase 2 (JAK2), Myeloproliferative Leukemia Virus (MPL), TET oncogene family member 2 (TET2), Additional Sex Combs-Like 1 (ASXL1), Casitas B-lineage lymphoma proto-oncogene (CBL), Isocitrate dehydrogenase (IDH) and IKAROS family zinc finger 1 (IKZF1) have been described in BCR-ABL1-negative MPNs. However, none of these mutations were MPN specific, displayed mutual exclusivity or could be traced back to a common ancestral clone. JAK2 and MPL mutations appear to exert a phenotype-modifying effect and are distinctly associated with polycythemia vera, essential thrombocythemia and primary myelofibrosis; the corresponding mutational frequencies are ∼99, 55 and 65% for JAK2 and 0, 3 and 10% for MPL mutations. The incidence of TET2, ASXL1, CBL, IDH or IKZF1 mutations in these disorders ranges from 0 to 17% these latter mutations are more common in chronic (TET2, ASXL1, CBL) or juvenile (CBL) myelomonocytic leukemias, mastocytosis (TET2), myelodysplastic syndromes (TET2, ASXL1) and secondary acute myeloid leukemia, including blast-phase MPN (IDH, ASXL1, IKZF1). The functional consequences of MPN-associated mutations include unregulated JAK-STAT (Janus kinase/signal transducer and activator of transcription) signaling, epigenetic modulation of transcription and abnormal accumulation of oncoproteins. However, it is not clear as to whether and how these abnormalities contribute to disease initiation, clonal evolution or blastic transformation
Design of Low-Impact Impedance Devices: the new Proton Synchrotron Booster Absorber Scraper (PSBAS)
At CERN the HL-LHC (High Luminosity Large Hadron Collider) and the LIU (LHC Injection Upgrade) projects call for an increase in beam parameters such as energy, intensity and brightness. To achieve this goal the whole accelerator complex will be upgraded. Systems, equipment and devices need to be redesigned and rebuilt accounting for the demanding new beam features. In this framework device impedance is a key parameter. It is essential to evaluate and to minimize the impedance of the component during its early design phase. This avoids beam instabilities and minimizes beam losses and induced heating. In this paper we outline general guidelines for a low-impedance design and we show how to implement them in a real case, taking as example the design of the new Proton Synchrotron Booster Absorber Scraper (PSBAS). This is a key component aimed to remove the beam halo at the beginning of the LHC accelerator chain
[Papillomatous lesions of the biliary tract].
Biliary papillomatosis is a rare entity, characterized by single or multiple lesions arising from the biliary epithelium, leading to relapsing attacks of obstructive jaundice and cholangitis. Usually considered a benign disease, progression to malignancy has though been reported. In this paper the case of a 72 year old patient, with a single papilloma of the left hepatic duct treated by left hepatectomy, is discussed. The main histological, clinical and therapeutic aspects of this unusual pathology are then examined, with a complete review of the Literature
- …