11,834 research outputs found
QCD at Finite Density and Color Superconductivity
Brief review of current status of the field.Comment: Invited talk at Lattice 99, Pisa, July 1999. 5 pages, 7 fig
Mass Terms in Effective Theories of High Density Quark Matter
We study the structure of mass terms in the effective theory for
quasi-particles in QCD at high baryon density. To next-to-leading order in the
expansion we find two types of mass terms, chirality conserving
two-fermion operators and chirality violating four-fermion operators. In the
effective chiral theory for Goldstone modes in the color-flavor-locked (CFL)
phase the former terms correspond to effective chemical potentials, while the
latter lead to Lorentz invariant mass terms. We compute the masses of Goldstone
bosons in the CFL phase, confirming earlier results by Son and Stephanov as
well as Bedaque and Sch\"afer. We show that to leading order in the coupling
constant there is no anti-particle gap contribution to the mass of
Goldstone modes, and that our results are independent of the choice of gauge.Comment: 22 pages, 4 figure
Superdense Matter
We review recent work on the phase structure of QCD at very high baryon
density. We introduce the phenomenon of color superconductivity and discuss the
use of weak coupling methods. We study the phase structure as a function of the
number of flavors and their masses. We also introduce effective theories that
describe low energy excitations at high baryon density. Finally, we study the
possibility of kaon condensation at very large baryon density.Comment: 13 pages, talk at ICPAQGP, Jaipur, India, Nov. 26-30, 2001; to appear
in the proceeding
Instanton Effects in QCD at High Baryon Density
We study instanton effects in QCD at very high baryon density. In this regime
instantons are suppressed by a large power of , where
is the QCD scale parameter and is the baryon chemical
potential. Instantons are nevertheless important because they contribute to
several physical observables that vanish to all orders in perturbative QCD. We
study, in particular, the chiral condensate and its contribution to the masses of Goldstone bosons in the CFL phase of QCD
with flavors. We find that at densities , where
is the density of nuclear matter, the result is dominated by large
instantons and subject to considerable uncertainties. We suggest that these
uncertainties can be addressed using lattice calculations of the instanton
density and the pseudoscalar diquark mass in QCD with two colors. We study the
topological susceptibility and Witten-Veneziano type mass relations in both
and QCD.Comment: 27 pages, 8 figures, minor revision
Instantons and Scalar Multiquark States: From Small to Large N_c
We study scalar quark-anti-quark and two-quark-two-anti-quark correlation
functions in the instanton liquid model. We show that the instanton liquid
supports a light scalar-isoscalar (sigma) meson, and that this state is
strongly coupled to both and . The scalar-isovector
meson, on the other hand, is heavy. We also show that these properties
are specific to QCD with three colors. In the large limit the
scalar-isoscalar meson is not light, and it is mainly coupled to .Comment: 24 page
Phases of QCD at High Baryon Density
We review recent work on the phase structure of QCD at very high baryon
density. We introduce the phenomenon of color superconductivity and discuss how
the quark masses and chemical potentials determine the structure of the
superfluid quark phase. We comment on the possibility of kaon condensation at
very high baryon density and study the competition between superfluid, density
wave, and chiral crystal phases at intermediate density.Comment: 15 pages. To appear in the proceedings of the ECT Workshop on Neutron
Star Interiors, Trento, Italy, June 200
The Shear Viscosity to Entropy Density Ratio of Trapped Fermions in the Unitarity Limit
We extract the shear viscosity to entropy density ratio \eta/s of cold
fermionic atoms in the unitarity limit from experimental data on the damping of
collective excitations. We find that near the critical temperature \eta/s is
roughly equal to 1/2 in units of \hbar/k_B. With the possible exception of the
quark gluon plasma, this value is closer to the conjectured lower bound
1/(4\pi) than any other known liquid.Comment: published versio
The Kohn-Luttinger Effect in Gauge Theories
Kohn and Luttinger showed that a many body system of fermions interacting via
short range forces becomes superfluid even if the interaction is repulsive in
all partial waves. In gauge theories such as QCD the interaction between
fermions is long range and the assumptions of Kohn and Luttinger are not
satisfied. We show that in a U(1) gauge theory the Kohn-Luttinger phenomenon
does not take place. In QCD attractive channels always exist, but there are
cases in which the primary pairing channel leaves some fermions ungapped. As an
example we consider the unpaired fermion in the 2SC phase of QCD with two
flavors. We show that it acquires a very small gap via a mechanism analogous to
the Kohn-Luttinger effect. The gap is too small to be phenomenologically
relevant.Comment: 5 pages, 2 figure, minor revisions, to appear in PR
- …