19,514 research outputs found

    The circumstellar environment of HD50138 revealed by VLTI/AMBER at high angular resolution

    Full text link
    HD50138 is a Herbig B[e] star with a circumstellar disc detected at IR and mm wavelength. Its brightness makes it a good candidate for NIR interferometry observations. We aim to resolve, spatially and spectrally, the continuum and hydrogen emission lines in the 2.12-2.47 micron region, to shed light on the immediate circumstellar environment of the star. VLTI/AMBER K-band observations provide spectra, visibilities, differential phases, and closure phases along three long baselines for the continuum, and HI emission in Brγ\gamma and five high-n Pfund lines. By computing the pure-line visibilities, we derive the angular size of the different line-emitting regions. A simple LTE model was created to constrain the physical conditions of HI emitting region. The continuum region cannot be reproduced by a geometrical 2D elongated Gaussian fitting model. We estimate the size of the region to be 1 au. We find the Brγ\gamma and Pfund lines come from a more compact region of size 0.4 au. The Brγ\gamma line exhibits an S-shaped differential phase, indicative of rotation. The continuum and Brγ\gamma line closure phase show offsets of \sim-25±\pm5 o^o and 20±\pm10o^o, respectively. This is evidence of an asymmetry in their origin, but with opposing directions. We find that we cannot converge on constraints for the HI physical parameters without a more detailed model. Our analysis reveals that HD50138 hosts a complex circumstellar environment. Its continuum emission cannot be reproduced by a simple disc brightness distribution. Similarly, several components must be evoked to reproduce the interferometric observables within the Brγ\gamma, line. Combining the spectroscopic and interferometric data of the Brγ\gamma and Pfund lines favours an origin in a wind region with a large opening angle. Finally, our results point to an evolved source.Comment: accepted for publication in A&

    Exploring the dimming event of RW Aur A through multi-epoch VLT/X-Shooter spectroscopy

    Full text link
    RW Aur A is a CTTS that has suddenly undergone three major dimming events since 2010. We aim to understand the dimming properties, examine accretion variability, and derive the physical properties of the inner disc traced by the CO ro-vibrational emission at NIR wavelengths (2.3 mic). We compared two epochs of X-Shooter observations, during and after the dimming. We modelled the rarely detected CO bandhead emission in both epochs to examine whether the inner disc properties had changed. The SED was used to derive the extinction properties of the dimmed spectrum and compare the infrared excess between the two epochs. Lines tracing accretion were used to derive the mass accretion rate in both states. The CO originates from a region with physical properties of T=3000 K, NCO_{CO}=1x1021^{21} cm2^{-2} and vsini=113 km/s. The extinction properties of the dimming layer were derived with the effective optical depth ranging from teff 2.5-1.5 from the UV to the NIR. The inferred mass accretion rate Macc is 1.5x1081.5x 10^{-8} Msun/yr and 2x108\sim 2x 10^{-8} Msun/yr after and during the dimming respectively. By fitting the SED, additional emission is observed in the IR during the dimming event from dust grains with temperatures of 500-700K. The physical conditions traced by the CO are similar for both epochs, indicating that the inner gaseous disc properties do not change during the dimming events. The extinction curve is flatter than that of the ISM, and large grains of a few hundred microns are thus required. When we correct for the observed extinction, Macc is constant in the two epochs, suggesting that the accretion is stable and therefore does not cause the dimming. The additional hot emission in the NIR is located at about 0.5 au from the star. The dimming events could be due to a dust-laden wind, a severe puffing-up of the inner rim, or a perturbation caused by the recent star-disc encounter.Comment: Accepted by Astronomy & Astrophysic

    On the MBM12 Young Association

    Get PDF
    I present a comprehensive study of the MBM12 young association (MBM12A). By combining infrared (IR) photometry from the Two-Micron All-Sky Survey (2MASS) survey with new optical imaging and spectroscopy, I have performed a census of the MBM12A membership that is complete to 0.03 Msun (H~15) for a 1.75deg X 1.4deg field encompassing the MBM12 cloud. I find five new members with masses of 0.1-0.4 Msun and a few additional candidates that have not been observed spectroscopically. From an analysis of optical and IR photometry for stars in the direction of MBM12, I identify M dwarfs in the foreground and background of the cloud. By comparing the magnitudes of these stars to those of local field dwarfs, I arrive at a distance modulus 7.2+/-0.5 (275 pc) to the MBM12 cloud; it is not the nearest molecular cloud and is not inside the local bubble of hot ionized gas as had been implied by previous distance estimates of 50-100 pc. I have also used Li strengths and H-R diagrams to constrain the absolute and relative ages of MBM12A and other young populations; these data indicate ages of 2 +3/-1 Myr for MBM12A and 10 Myr for the TW Hya and Eta Cha associations. MBM12A may be a slightly evolved version of the aggregates of young stars within the Taurus dark clouds (~1 Myr) near the age of the IC 348 cluster (~2 Myr).Comment: to be published in The Astrophysical Journal, 41 pages, 14 figures, also found at http://cfa-www.harvard.edu/sfgroup/preprints.htm

    Role of Nitric Oxide in the Altered Calcium Homeostasis of Platelets from Rats with Biliary Cirrhosis.

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)

    Chemical Abundances in the Secondary Star in the Black Hole Binary A0620-00

    Full text link
    Using a high resolution spectrum of the secondary star in the black hole binary A0620-00, we have derived the stellar parameters and veiling caused by the accretion disk in a consistent way. We have used a chi^2 minimization procedure to explore a grid of 800 000 LTE synthetic spectra computed for a plausible range of both stellar and veiling parameters. Adopting the best model parameters found, we have determined atmospheric abundances of Fe, Ca, Ti, Ni and Al. The Fe abundance of the star is [Fe/H]=0.14 +- 0.20. Except for Ca, we found the other elements moderately over-abundant as compared with stars in the solar neighborhood of similar iron content. Taking into account the small orbital separation, the mass transfer rate and the mass of the convection zone of the secondary star, a comparison with element yields in supernova explosion models suggests a possible explosive event with a mass cut comparable to the current mass of the compact object. We have also analyzed the Li abundance, which is unusually high for a star of this spectral type and relatively low mass.Comment: 32 pages, 5 tables and 11 figures, uses rotate.st

    Boron in Very Metal-Poor Stars

    Get PDF
    We have observed the B I 2497 A line to derive the boron abundances of two very metal-poor stars selected to help in tracing the origin and evolution of this element in the early Galaxy: BD +23 3130 and HD 84937. The observations were conducted using the Goddard High Resolution Spectrograph on board the Hubble Space Telescope. A very detailed abundance analysis via spectral synthesis has been carried out for these two stars, as well as for two other metal-poor objects with published spectra, using both Kurucz and OSMARCS model photospheres, and taking into account consistently the NLTE effects on the line formation. We have also re-assessed all published boron abundances of old disk and halo unevolved stars. Our analysis shows that the combination of high effective temperature (Teff > 6000 K, for which boron is mainly ionized) and low metallicity ([Fe/H]<-1) makes it difficult to obtain accurate estimates of boron abundances from the B I 2497 A line. This is the case of HD 84937 and three other published objects (including two stars with [Fe/H] ~ -3), for which only upper limits can be established. BD +23 3130, with [Fe/H] ~ -2.9 and logN(B)_NLTE=0.05+/-0.30, appears then as the most metal-poor star for which a firm measurement of the boron abundance presently exists. The evolution of the boron abundance with metallicity that emerges from the seven remaining stars with Teff < 6000 K and [Fe/H]<-1, for which beryllium abundances were derived using the same stellar parameters, shows a linear increase with a slope ~ 1. Furthermore, the B/Be ratio found is constant at a value ~ 20 for stars in the range -3<[Fe/H]<-1. These results point to spallation reactions of ambient protons and alpha particles with energetic particles enriched in CNO as the origin of boron and beryllium in halo stars.Comment: 38 pages, 11 Encapsulated Postscript figures (included), uses aaspp4.sty. Accepted for publication in The Astrophysical Journal. The preprint is also available at: http://www.iac.es/publicaciones/preprints.htm
    corecore