9,826 research outputs found
Spin-resolved electron-impact ionization of lithium
Electron-impact ionization of lithium is studied using the convergent
close-coupling (CCC) method at 25.4 and 54.4 eV. Particular attention is paid
to the spin-dependence of the ionization cross sections. Convergence is found
to be more rapid for the spin asymmetries, which are in good agreement with
experiment, than for the underlying cross sections. Comparison with the recent
measured and DS3C-calculated data of Streun et al (1999) is most intriguing.
Excellent agreement is found with the measured and calculated spin asymmetries,
yet the discrepancy between the CCC and DS3C cross sections is very large
Corrections to Scaling in Phase-Ordering Kinetics
The leading correction to scaling associated with departures of the initial
condition from the scaling morphology is determined for some soluble models of
phase-ordering kinetics. The result for the pair correlation function has the
form C(r,t) = f_0(r/L) + L^{-\omega} f_1(r/L) + ..., where L is a
characteristic length scale extracted from the energy. The
correction-to-scaling exponent \omega has the value \omega=4 for the d=1
Glauber model, the n-vector model with n=\infty, and the approximate theory of
Ohta, Jasnow and Kawasaki. For the approximate Mazenko theory, however, \omega
has a non-trivial value: omega = 3.8836... for d=2, and \omega = 3.9030... for
d=3. The correction-to-scaling functions f_1(x) are also calculated.Comment: REVTEX, 7 pages, two figures, needs epsf.sty and multicol.st
A counter-example to a recent version of the Penrose conjecture
By considering suitable axially symmetric slices on the Kruskal spacetime, we
construct counterexamples to a recent version of the Penrose inequality in
terms of so-called generalized apparent horizons.Comment: 12 pages. Appendix added with technical details. To appear in
Classical and Quantum Gravit
Velocity Distribution of Topological Defects in Phase-Ordering Systems
The distribution of interface (domain-wall) velocities in a
phase-ordering system is considered. Heuristic scaling arguments based on the
disappearance of small domains lead to a power-law tail,
for large v, in the distribution of . The exponent p is
given by , where d is the space dimension and 1/z is the growth
exponent, i.e. z=2 for nonconserved (model A) dynamics and z=3 for the
conserved case (model B). The nonconserved result is exemplified by an
approximate calculation of the full distribution using a gaussian closure
scheme. The heuristic arguments are readily generalized to conserved case
(model B). The nonconserved result is exemplified by an approximate calculation
of the full distribution using a gaussian closure scheme. The heuristic
arguments are readily generalized to systems described by a vector order
parameter.Comment: 5 pages, Revtex, no figures, minor revisions and updates, to appear
in Physical Review E (May 1, 1997
Hydrodynamic synchronisation of non-linear oscillators at low Reynolds number
We introduce a generic model of weakly non-linear self-sustained oscillator
as a simplified tool to study synchronisation in a fluid at low Reynolds
number. By averaging over the fast degrees of freedom, we examine the effect of
hydrodynamic interactions on the slow dynamics of two oscillators and show that
they can lead to synchronisation. Furthermore, we find that synchronisation is
strongly enhanced when the oscillators are non-isochronous, which on the limit
cycle means the oscillations have an amplitude-dependent frequency.
Non-isochronity is determined by a nonlinear coupling being non-zero.
We find that its () sign determines if they synchronise in- or
anti-phase. We then study an infinite array of oscillators in the long
wavelength limit, in presence of noise. For , hydrodynamic
interactions can lead to a homogeneous synchronised state. Numerical
simulations for a finite number of oscillators confirm this and, when , show the propagation of waves, reminiscent of metachronal coordination.Comment: 4 pages, 2 figure
Two-body anticorrelation in a harmonically trapped ideal Bose gas
We predict the existence of a dip below unity in the second-order coherence
function of a partially condensed ideal Bose gas in harmonic confinement,
signaling the anticorrelation of density fluctuations in the sample. The dip in
the second-order coherence function is revealed in a canonical-ensemble
calculation, corresponding to a system with fixed total number of particles. In
a grand-canonical ensemble description, this dip is obscured by the
occupation-number fluctuation catastrophe of the ideal Bose gas. The
anticorrelation is most pronounced in highly anisotropic trap geometries
containing small particle numbers. We explain the fundamental physical
mechanism which underlies this phenomenon, and its relevance to experiments on
interacting Bose gases.Comment: 10 pages, 5 figures. v2: Minor changes and corrections to figures and
text. To appear in PR
Corrections to Scaling in the Phase-Ordering Dynamics of a Vector Order Parameter
Corrections to scaling, associated with deviations of the order parameter
from the scaling morphology in the initial state, are studied for systems with
O(n) symmetry at zero temperature in phase-ordering kinetics. Including
corrections to scaling, the equal-time pair correlation function has the form
C(r,t) = f_0(r/L) + L^{-omega} f_1(r/L) + ..., where L is the coarsening length
scale. The correction-to-scaling exponent, omega, and the correction-to-scaling
function, f_1(x), are calculated for both nonconserved and conserved order
parameter systems using the approximate Gaussian closure theory of Mazenko. In
general, omega is a non-trivial exponent which depends on both the
dimensionality, d, of the system and the number of components, n, of the order
parameter. Corrections to scaling are also calculated for the nonconserved 1-d
XY model, where an exact solution is possible.Comment: REVTeX, 20 pages, 2 figure
Why temperature chaos in spin glasses is hard to observe
The overlap length of a three-dimensional Ising spin glass on a cubic lattice
with Gaussian interactions has been estimated numerically by transfer matrix
methods and within a Migdal-Kadanoff renormalization group scheme. We find that
the overlap length is large, explaining why it has been difficult to observe
spin glass chaos in numerical simulations and experiment.Comment: 4 pages, 6 figure
Phase Ordering Dynamics of the O(n) Model - Exact Predictions and Numerical Results
We consider the pair correlation functions of both the order parameter field
and its square for phase ordering in the model with nonconserved order
parameter, in spatial dimension and spin dimension .
We calculate, in the scaling limit, the exact short-distance singularities of
these correlation functions and compare these predictions to numerical
simulations. Our results suggest that the scaling hypothesis does not hold for
the model. Figures (23) are available on request - email
[email protected]: 23 pages, Plain LaTeX, M/C.TH.93/2
- …