357 research outputs found
Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes
We have performed time-resolved spectroscopy on InAs quantum dot ensembles in
photonic crystal membranes. The influence of the photonic crystal is
investigated by varying the lattice constant systematically. We observe a
strong slow down of the quantum dots' spontaneous emission rates as the
two-dimensional bandgap is tuned through their emission frequencies. The
measured band edges are in full agreement with theoretical predictions. We
characterize the multi-exponential decay curves by their mean decay time and
find enhancement of the spontaneous emission at the bandgap edges and strong
inhibition inside the bandgap in good agreement with local density of states
calculations.Comment: 9 pages (preprint), 3 figure
Magnesium and <sup>54</sup>Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes
AbstractWe report on the petrology, magnesium isotopes and mass-independent 54Cr/52Cr compositions (μ54Cr) of 42 chondrules from CV (Vigarano and NWA 3118) and CR (NWA 6043, NWA 801 and LAP 02342) chondrites. All sampled chondrules are classified as type IA or type IAB, have low 27Al/24Mg ratios (0.04–0.27) and display little or no evidence for secondary alteration processes. The CV and CR chondrules show variable 25Mg/24Mg and 26Mg/24Mg values corresponding to a range of mass-dependent fractionation of ∼500ppm (parts per million) per atomic mass unit. This mass-dependent Mg isotope fractionation is interpreted as reflecting Mg isotope heterogeneity of the chondrule precursors and not the result of secondary alteration or volatility-controlled processes during chondrule formation. The CV and CR chondrule populations studied here are characterized by systematic deficits in the mass-independent component of 26Mg (μ26Mg∗) relative to the solar value defined by CI chondrites, which we interpret as reflecting formation from precursor material with a reduced initial abundance of 26Al compared to the canonical 26Al/27Al of ∼5×10−5. Model initial 26Al/27Al values of CV and CR chondrules vary from (1.5±4.0)×10−6 to (2.2±0.4)×10−5. The CV chondrules display significant μ54Cr variability, defining a range of compositions that is comparable to that observed for inner Solar System primitive and differentiated meteorites. In contrast, CR chondrites are characterized by a narrower range of μ54Cr values restricted to compositions typically observed for bulk carbonaceous chondrites. Collectively, these observations suggest that the CV chondrules formed from precursors that originated in various regions of the protoplanetary disk and were then transported to the accretion region of the CV parent asteroid whereas CR chondrule predominantly formed from precursor with carbonaceous chondrite-like μ54Cr signatures. The observed μ54Cr variability in chondrules from CV and CR chondrites suggest that the matrix and chondrules did not necessarily formed from the same reservoir. The coupled μ26Mg∗ and μ54Cr systematics of CR chondrules establishes that these objects formed from a thermally unprocessed and 26Al-poor source reservoir distinct from most inner Solar System asteroids and planetary bodies, possibly located beyond the orbits of the gas giants. In contrast, a large fraction of the CV chondrules plot on the inner Solar System correlation line, indicating that these objects predominantly formed from thermally-processed, 26Al-bearing precursor material akin to that of inner Solar System solids, asteroids and planets
Network analysis of differential Ras isoform mutation effects on intestinal epithelial responses to TNF-α
Tumor necrosis factor alpha (TNF-α) is an inflammatory cytokine that can elicit distinct cellular behaviors under different molecular contexts. Mitogen activated protein kinase (MAPK) pathways, especially the extracellular signal-regulated kinase (Erk) pathway, help to integrate influences from the environmental context, and therefore modulate the phenotypic effect of TNF-α exposure. To test how variations in flux through the Erk pathway modulate TNF-α-elicited phenotypes in a complex physiological environment, we exposed mice with different Ras mutations (K-Ras activation, N-Ras activation, and N-Ras ablation) to TNF-α and observed phenotypic and signaling changes in the intestinal epithelium. Hyperactivation of Mek1, an Erk kinase, was observed in the intestine of mice with K-Ras activation and, surprisingly, in N-Ras null mice. Nevertheless, these similar Mek1 outputs did not give rise to the same phenotype, as N-Ras null intestine was hypersensitive to TNF-α-induced intestinal cell death while K-Ras mutant intestine was not. A systems biology approach applied to sample the network state revealed that the signaling contexts presented by these two Ras isoform mutations were different. Consistent with our experimental data, N-Ras ablation induced a signaling network state that was mathematically predicted to be pro-death, while K-Ras activation did not. Further modeling by constrained Fuzzy Logic (cFL) revealed that N-Ras and K-Ras activate the signaling network with different downstream distributions and dynamics, with N-Ras effects being more transient and diverted more towards PI3K-Akt signaling and K-Ras effects being more sustained and broadly activating many pathways. Our study highlights the necessity to consider both environmental and genomic contexts of signaling pathway activation in dictating phenotypic responses, and demonstrates how modeling can provide insight into complex in vivo biological mechanisms, such as the complex interplay between K-Ras and N-Ras in their downstream effects.National Institute of General Medical Sciences (U.S.) (Grant R01-GM088827)National Cancer Institute (U.S.) (U54-CA112967)United States. Army Research Office (Institute for Collaborative Biotechnologies Grant W911NF-09-D-000
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs
We describe the design and performance of the near-infrared (1.51--1.70
micron), fiber-fed, multi-object (300 fibers), high resolution (R =
lambda/delta lambda ~ 22,500) spectrograph built for the Apache Point
Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ~
10^5 red giant stars that systematically sampled all Milky Way populations
(bulge, disk, and halo) to study the Galaxy's chemical and kinematical history.
It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 -- 2014
using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New
Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV,
as well as a second spectrograph, a close copy of the first, operating at the
2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several
fiber-fed, multi-object, high resolution spectrographs have been built for
visual wavelength spectroscopy, the APOGEE spectrograph is one of the first
such instruments built for observations in the near-infrared. The instrument's
successful development was enabled by several key innovations, including a
"gang connector" to allow simultaneous connections of 300 fibers; hermetically
sealed feedthroughs to allow fibers to pass through the cryostat wall
continuously; the first cryogenically deployed mosaic volume phase holographic
grating; and a large refractive camera that includes mono-crystalline silicon
and fused silica elements with diameters as large as ~ 400 mm. This paper
contains a comprehensive description of all aspects of the instrument including
the fiber system, optics and opto-mechanics, detector arrays, mechanics and
cryogenics, instrument control, calibration system, optical performance and
stability, lessons learned, and design changes for the second instrument.Comment: 81 pages, 67 figures, PASP, accepte
Design of a multi-center immunophenotyping analysis of peripheral blood, sputum and bronchoalveolar lavage fluid in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS)
Background
Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS) is a multi-center longitudinal, observational study to identify novel phenotypes and biomarkers of chronic obstructive pulmonary disease (COPD). In a subset of 300 subjects enrolled at six clinical centers, we are performing flow cytometric analyses of leukocytes from induced sputum, bronchoalveolar lavage (BAL) and peripheral blood. To minimize several sources of variability, we use a “just-in-time” design that permits immediate staining without pre-fixation of samples, followed by centralized analysis on a single instrument.
Methods
The Immunophenotyping Core prepares 12-color antibody panels, which are shipped to the six Clinical Centers shortly before study visits. Sputum induction occurs at least two weeks before a bronchoscopy visit, at which time peripheral blood and bronchoalveolar lavage are collected. Immunostaining is performed at each clinical site on the day that the samples are collected. Samples are fixed and express shipped to the Immunophenotyping Core for data acquisition on a single modified LSR II flow cytometer. Results are analyzed using FACS Diva and FloJo software and cross-checked by Core scientists who are blinded to subject data.
Results
Thus far, a total of 152 sputum samples and 117 samples of blood and BAL have been returned to the Immunophenotyping Core. Initial quality checks indicate useable data from 126 sputum samples (83%), 106 blood samples (91%) and 91 BAL samples (78%). In all three sample types, we are able to identify and characterize the activation state or subset of multiple leukocyte cell populations (including CD4+ and CD8+ T cells, B cells, monocytes, macrophages, neutrophils and eosinophils), thereby demonstrating the validity of the antibody panel.
Conclusions
Our study design, which relies on bi-directional communication between clinical centers and the Core according to a pre-specified protocol, appears to reduce several sources of variability often seen in flow cytometric studies involving multiple clinical sites. Because leukocytes contribute to lung pathology in COPD, these analyses will help achieve SPIROMICS aims of identifying subgroups of patients with specific COPD phenotypes. Future analyses will correlate cell-surface markers on a given cell type with smoking history, spirometry, airway measurements, and other parameters.
Trial registration
This study was registered with ClinicalTrials.gov as NCT01969344
Generation of lung epithelial-like tissue from human embryonic stem cells
<p>Abstract</p> <p>Background</p> <p>Human embryonic stem cells (hESC) have the capacity to differentiate <it>in vivo </it>and <it>in vitro </it>into cells from all three germ lineages. The aim of the present study was to investigate the effect of specific culture conditions on the differentiation of hESC into lung epithelial cells.</p> <p>Methods</p> <p>Undifferentiated hESC, grown on a porous membrane in hESC medium for four days, were switched to a differentiation medium for four days; this was followed by culture in air-liquid interface conditions during another 20 days. Expression of several lung markers was measured by immunohistochemistry and by quantitative real-time RT-PCR at four different time points throughout the differentiation and compared to appropriate controls.</p> <p>Results</p> <p>Expression of <it>CC16 </it>and <it>NKX2.1 </it>showed a 1,000- and 10,000- fold increase at day 10 of differentiation. Other lung markers such as <it>SP-C </it>and <it>Aquaporin 5 </it>had the highest expression after twenty days of culture, as well as two markers for ciliated cells, <it>FOXJ1 </it>and <it>β-tubulin IV</it>. The results from qRT-PCR were confirmed by immunohistochemistry on paraffin-embedded samples. Antibodies against CC16, SP-A and SP-C were chosen as specific markers for Clara Cells and alveolar type II cells. The functionality was tested by measuring the secretion of CC16 in the medium using an enzyme immunoassay.</p> <p>Conclusion</p> <p>These results suggest that by using our novel culture protocol hESC can be differentiated into the major cell types of lung epithelial tissue.</p
Progress in thermochemical hydrogen production with the copper–chlorine cycle
Recent advances are reported by an international team on research and development of the copper chlorine (Cu–Cl) cycle for thermochemical hydrogen production. New experimental and numerical results are given for several processes of the cycle. Experimental results for CuCl/HCl electrolysis and integration of unit operations in the Cu–Cl cycle are presented. A new solubility model for the CuCl–CuCl2–HCl–H2O quaternary system is presented, which optimizes the cupric chloride selective precipitation prior to the hydrolysis reactor. Also, recent progress on photo-electrochemical cell development for enhancement of the electrolysis process is reported along with its integration with a concentrated solar radiation system
- …