347 research outputs found

    Dexamethasone vs prednisone in induction treatment of pediatric ALL: results of the randomized trial AIEOP-BFM ALL 2000

    Get PDF
    Induction therapy for childhood acute lymphoblastic leukemia (ALL) traditionally includes prednisone; yet, dexamethasone may have higher antileukemic potency, leading to fewer relapses and improved survival. After a 7-day prednisone prephase, 3720 patients enrolled on trial Associazione Italiana di Ematologia e Oncologia Pediatrica and Berlin-Frankfurt-Münster (AIEOP-BFM) ALL 2000 were randomly selected to receive either dexamethasone (10 mg/m(2) per day) or prednisone (60 mg/m(2) per day) for 3 weeks plus tapering in induction. The 5-year cumulative incidence of relapse (± standard error) was 10.8 ± 0.7% in the dexamethasone and 15.6 ± 0.8% in the prednisone group (P < .0001), showing the largest effect on extramedullary relapses. The benefit of dexamethasone was partially counterbalanced by a significantly higher induction-related death rate (2.5% vs 0.9%, P = .00013), resulting in 5-year event-free survival rates of 83.9 ± 0.9% for dexamethasone and 80.8 ± 0.9% for prednisone (P = .024). No difference was seen in 5-year overall survival (OS) in the total cohort (dexamethasone, 90.3 ± 0.7%; prednisone, 90.5 ± 0.7%). Retrospective analyses of predefined subgroups revealed a significant survival benefit from dexamethasone only for patients with T-cell ALL and good response to the prednisone prephase (prednisone good-response [PGR]) (dexamethasone, 91.4 ± 2.4%; prednisone, 82.6 ± 3.2%; P = .036). In patients with precursor B-cell ALL and PGR, survival after relapse was found to be significantly worse if patients were previously assigned to the dexamethasone arm. We conclude that, for patients with PGR in the large subgroup of precursor B-cell ALL, dexamethasone especially reduced the incidence of better salvageable relapses, resulting in inferior survival after relapse. This explains the lack of benefit from dexamethasone in overall survival that we observed in the total cohort except in the subset of T-cell ALL patients with PGR. This trial was registered at www.clinicaltrials.gov (BFM: NCT00430118, AIEOP: NCT00613457)

    Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects

    Get PDF
    The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability
    corecore