133 research outputs found

    C-axis negative magnetoresistance and upper critical field of Bi2Sr2CaCu2O8

    Get PDF
    The out-of-plane resistance and the resistive upper critical field of BSCCO-2212 single crystals with Tc=91-93 K have been measured in magnetic fields up to 50 T over a wide temperature range. The results are characterised by a positive linear magnetoresistance in the superconducting state and a negative linear magnetoresistance in the normal state. The zero field normal state c-axis resistance, the negative linear normal state magnetoresistance, and the divergent upper critical field Hc2(T)are explained in the framework of the bipolaron theory of superconductivity.Comment: 4 pages (REVTeX), 4 figures, submitted to Physical Review Letters 6 April 1999, rejected in February 2000, accepted for publication in Europhysics Letters on 31 May 200

    Quasiparticles in the vortex state of V3Si

    Get PDF
    Low-energy quasiparticle excitations in the vortex state of the superconductor V3Si have been investigated using the de Haas-van Alphen effect. Quantum oscillations persist to surprisingly low values of B0/B(c2) is similar to 0.6 and T/T(c) is similar to 0.001. The superconducting state introduces a field-dependent quasiparticle damping which has a value HBAR tau-1 almost-equal-to 0.25 DELTA at the lowest fields investigated, considerably less than the superconducting gap DELTA. Quantum oscillations are attributed to the presence of a gapless excitation spectrum and may be a universal characteristic of superconductors in the vortex state

    Thermal activation between Landau levels in the organic superconductor β′′\beta''-(BEDT-TTF)2_{2}SF5_{5}CH2_{2}CF2_{2}SO3_{3}

    Get PDF
    We show that Shubnikov-de Haas oscillations in the interlayer resistivity of the organic superconductor β′′\beta''-(BEDT-TTF)2_{2}SF5_{5} CH2_{2}CF2_{2}SO3_{3} become very pronounced in magnetic fields ∼\sim~60~T. The conductivity minima exhibit thermally-activated behaviour that can be explained simply by the presence of a Landau gap, with the quasi-one-dimensional Fermi surface sheets contributing negligibly to the conductivity. This observation, together with complete suppression of chemical potential oscillations, is consistent with an incommensurate nesting instability of the quasi-one-dimensional sheets.Comment: 6 pages, 4 figure

    Quantitative investigation of the de Haas-van Alphen effect in the superconducting state

    Get PDF
    The de Haas-van Alphen effect in the vortex state of the type-II superconductors 2H-NbSe2 and V3Si is studied. We discuss the experimental and theoretical considerations pertaining to the observation of such oscillations. Macroscopic pinning of the flux lattice cannot explain the observed attenuation of quantum oscillations in the mixed state. A critical comparison of our measurements with the various microscopic theoretical models describing this phenomenon is made. We show how orientation-dependent de Haas-van Alphen data may be analyzed in a model-dependent way to yield the variation of the superconducting gap over the Fermi surface

    Localized f electrons in CexLa1-xRhIn5: dHvA Measurements

    Full text link
    Measurements of the de Haas-van Alphen effect in CexLa1-xRhIn5 reveal that the Ce 4f electrons remain localized for all x, with the mass enhancement and progressive loss of one spin from the de Haas-van Alphen signal resulting from spin fluctuation effects. This behavior may be typical of antiferromagnetic heavy fermion compounds, inspite of the fact that the 4f electron localization in CeRhIn5 is driven, in part, by a spin-density wave instability.Comment: 4 pages, 4 figures, submitted to PR

    Ginzburg-Landau functional for nearly antiferromagnetic perfect and disordered Kondo lattices

    Full text link
    Interplay between Kondo effect and trends to antiferromagnetic and spin glass ordering in perfect and disordered bipartite Kondo lattices is considered. Ginzburg-Landau equation is derived from the microscopic effective action written in three mode representation (Kondo screening, antiferromagnetic correlations and spin liquid correlations). The problem of local constraint is resolved by means of Popov-Fedotov representation for localized spin operators. It is shown that the Kondo screening enhances the trend to a spin liquid crossover and suppresses antiferromagnetic ordering in perfect Kondo lattices and spin glass ordering in doped Kondo lattices. The modified Doniach's diagram is constructed, and possibilities of going beyond the mean field approximation are discussed.Comment: 18 pages, RevTeX, 7 EPS figures include

    Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor

    Full text link
    Despite twenty years of research, the phase diagram of high transition- temperature superconductors remains enigmatic. A central issue is the origin of the differences in the physical properties of these copper oxides doped to opposite sides of the superconducting region. In the overdoped regime, the material behaves as a reasonably conventional metal, with a large Fermi surface. The underdoped regime, however, is highly anomalous and appears to have no coherent Fermi surface, but only disconnected "Fermi arcs". The fundamental question, then, is whether underdoped copper oxides have a Fermi surface, and if so, whether it is topologically different from that seen in the overdoped regime. Here we report the observation of quantum oscillations in the electrical resistance of the oxygen-ordered copper oxide YBa2Cu3O6.5, establishing the existence of a well-defined Fermi surface in the ground state of underdoped copper oxides, once superconductivity is suppressed by a magnetic field. The low oscillation frequency reveals a Fermi surface made of small pockets, in contrast to the large cylinder characteristic of the overdoped regime. Two possible interpretations are discussed: either a small pocket is part of the band structure specific to YBa2Cu3O6.5 or small pockets arise from a topological change at a critical point in the phase diagram. Our understanding of high-transition temperature (high-Tc) superconductors will depend critically on which of these two interpretations proves to be correct

    ‘… a metal conducts and a non-metal doesn't’

    Get PDF
    In a letter to one of the authors, Sir Nevill Mott, then in his tenth decade, highlighted the fact that the statement ‘… a metal conducts, and a non-metal doesn’t’ can be true only at the absolute zero of temperature, T=0 K. But, of course, experimental studies of metals, non-metals and, indeed, the electronic and thermodynamic transition between these canonical states of matter must always occur above T=0 K, and, in many important cases, for temperatures far above the absolute zero. Here, we review the issues—theoretical and experimental—attendant on studies of the metal to non-metal transition in doped semiconductors at temperatures close to absolute zero (T=0.03 K) and fluid chemical elements at temperatures far above absolute zero (T>1000 K)
    • …
    corecore