17 research outputs found

    Growth curves and takeover time in distributed evolutionary algorithms

    No full text
    Abstract. This paper presents a study of different models for the growth curves and takeover time in a distributed EA (dEA). The calculation of the takeover time and the dynamical growth curves is a common analytical approach to measure the selection pressure of an EA. This work is a first step to mathematically unify and describe the roles of the migration rate and the migration frequency in the selection pressure induced by the dynamics of dEAs. In order to achieve these goals we evaluate the appropriateness of the well-known logistic model and of a hypergraph model for dEAs. After that, we propose a corrected hypergraph model and two new models based in an extension of the logistic one. Our results show that accurate models for growth curves can be defined for dEAs, and explain analytically the migration rate and frequency effects.

    Intensity-modulated proton therapy, volumetric-modulated arc therapy, and 3D conformal radiotherapy in anaplastic astrocytoma and glioblastoma : A dosimetric comparison.

    No full text
    Purpose: The prognosis for high-grade glioma (HGG) patients is poor; thus, treatment-related side effects need to be minimized to conserve quality of life and functionality. Advanced techniques such as proton radiation therapy (PRT) and volumetric-modulated arc therapy (VMAT) may potentially further reduce the frequency and severity of radiogenic impairment. Materials and methods: We retrospectively assessed 12 HGG patients who had undergone postoperative intensity-modulated proton therapy (IMPT). VMAT and 3D conformal radiotherapy (3D-CRT) plans were generated and optimized for comparison after contouring crucial neuronal structures important for neurogenesis and neurocognitive function. Integral dose (ID), homogeneity index (HI), and inhomogeneity coefficient (IC) were calculated from dose statistics. Toxicity data were evaluated. Results: Target volume coverage was comparable for all three modalities. Compared to 3D-CRT and VMAT, PRT showed statistically significant reductions (p < 0.05) in mean dose to whole brain (−20.2 %, −22.7 %); supratentorial (−14.2 %, −20,8 %) and infratentorial (−91.0 %, −77.0 %) regions; brainstem (−67.6 %, −28.1 %); pituitary gland (−52.9 %, −52.5 %); contralateral hippocampus (−98.9 %, −98.7 %); and contralateral subventricular zone (−62.7 %, −66.7 %, respectively). Fatigue (91.7 %), radiation dermatitis (75.0 %), focal alopecia (100.0 %), nausea (41.7 %), cephalgia (58.3 %), and transient cerebral edema (16.7 %) were the most common acute toxicities. Conclusion: Essential dose reduction while maintaining equal target volume coverage was observed using PRT, particularly in contralaterally located critical neuronal structures, areas of neurogenesis, and structures of neurocognitive functions. These findings were supported by preliminary clinical results confirming the safety and feasibility of PRT in HGG
    corecore