11 research outputs found

    Distortion of spores of moss Venturiella under ultra high pressure

    No full text
    In our previous studies on the tolerance of living organisms such as planktons and spores of mosses to the high hydrostatic pressure of 7.5 GPa, we showed that all the samples could be borne at this high pressure. These studies have been extended to the extreme high pressure of 20GPa by using a Kawai-type octahedral anvil press. It was found that the average diameter of the spores of Venturiella exposed to 20GPa for 30min was 25.5m, which is 16.5% smaller (40.0% smaller in volume) than that of the control group which was not exposed to high pressure. The inner organisms showed a further extent of plastic deformation. As a result, a gap appeared between the outer cover and the cytoplasm. A relationship has been obtained between the survival ratio and plastic deformation of spores of moss Venturiella caused by the application of ultra high pressure

    Effect of very high pressure on life of plants and animals

    No full text
    We studied the tolerance of living organisms, such as a small animal (Milnesium tardigradum), a small crustacean (Artemia), non-vascular plants or moss (Ptichomitrium and Venturiella), and a vascular plant (Trifolium) to the extremely high hydrostatic pressure of 7.5 GPa. It turned out that most of the high pressure exposed seeds of white clover were alive. Those exposed to 7.5 GPa for up to 1 day and seeded on agar germinated roots. Those exposed for up to 1 hour and seeded on soil germinated stems and leaves. Considering the fact that proteins begins to unfold around 0.3 GPa, it seems difficult to understand that all the living samples which have been investigated can survive after exposure to 7.5 GPa

    CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes

    No full text
    Although dendritic cells (DCs) located in the small intestinal lamina propria (LP-DCs) migrate to mesenteric lymph nodes (MLNs) constitutively, it is unclear which chemokines regulate their trafficking to MLNs. In this study we report that LP-DCs in unperturbed mice require CCR7 to migrate to MLNs. In vitro, LP-DCs expressing CCR7 migrated toward CCL21, although the LP-DCs appeared morphologically and phenotypically immature. In MLNs, DCs bearing the unique LP-DC phenotype (CD11chighCD8αintCD11b lowαL lowÎČ7 high and CD11chighCD8α-CD11b highαL lowÎČ7 high) were abundant in wild-type mice, but were markedly fewer in CCL19-, CCL21-Ser-deficient plt/plt mice and were almost absent in CCR7-deficient mice, indicating the critical importance of CCR7 in LP-DC trafficking to MLNs. Interestingly, CCR7+ DCs in MLNs with the unique LP-DC phenotype had numerous vacuoles containing cellular debris in the cytoplasm, although MLN-DCs themselves were poorly phagocytic, suggesting that the debris was derived from the LP, where the LP-DCs ingested apoptotic intestinal epithelial cells (IECs). Consistent with this, LP-DCs ingested IECs vigorously in vitro. By presenting IEC-associated Ag, the LP-DCs also induce T cells to produce IL-4 and IL-10. Collectively, these results strongly suggest that LP-DCs with unique immunomodulatory activities migrate to MLNs in a CCR7-dependent manner to engage in the presentation of IEC-associated Ags acquired in the LP
    corecore