7,656 research outputs found
Load distribution in small world networks
In this paper we introduce a new model of data packet transport, based on a
stochastic approach with the aim of characterizing the load distribution on
complex networks. Moreover we analyze the load standard deviation as an index
of uniformity of the distribution of packets within the network, to
characterize the effects of the network topology. We measure such index on the
model proposed by Watts and Strogatz as the redirection probability is
increased. We find that the uniformity of the load spread is maximized in the
intermediate region, at which the small world effect is observed and both
global and local efficiency are high. Moreover we analyze the relationship
between load centrality and degree centrality as an approximate measure of the
load at the edges. Analogous results are obtained for the load variance
computed at the edges as well as at the vertices.Comment: 6 pages, 5 figures. Included in conference proceedings International
Conference PhysCon 2005 August 24-26, 2005, Saint Petersburg, RUSSI
Measurement of the Gravity-Field Curvature by Atom Interferometry
We present the first direct measurement of the gravity-field curvature based
on three conjugated atom interferometers. Three atomic clouds launched in the
vertical direction are simultaneously interrogated by the same atom
interferometry sequence and used to probe the gravity field at three equally
spaced positions. The vertical component of the gravity-field curvature
generated by nearby source masses is measured from the difference between
adjacent gravity gradient values. Curvature measurements are of interest in
geodesy studies and for the validation of gravitational models of the
surrounding environment. The possibility of using such a scheme for a new
determination of the Newtonian constant of gravity is also discussed.Comment: 5 pages, 3 figure
Recommended from our members
Semantic and inferencing abilities in children with communication disorders
Background: Semantic and inferencing abilities have not been fully examined in children with communication difficulties.
Aims: To investigate the inferential and semantic abilities of children with communication difficulties using newly designed tasks.
Methods & Procedures: Children with different types of communication disorder were compared with each other and with three groups of typically developing children: those of the same chronological age and two groups of younger children. In total, 25 children aged 11 years with specific language impairment and 22 children, also 11 years of age, with primary pragmatic difficulties were recruited. Typically developing groups aged 11 (nâ=â35; ageâmatch), and those aged 9 (nâ=â40) and 7 (nâ=â37; language similar) also participated as comparisons.
Outcomes & Results: For Semantic Choices, children with specific language impairment performed significantly more poorly than 9â and 11âyearâolds, whilst the pragmatic difficulties group scored significantly lower than all the typically developing groups. Borderline differences between specific language impairment and pragmatic difficulties groups were found. For inferencing, children with communication impairments performed significantly below the 11âyearâold peers, but not poorer than 9â and 7âyearâolds, suggesting that this skill is in line with language ability. Six children in the pragmatic difficulties group who met diagnosis for autism performed more poorly than the other two clinical groups on both tasks, but not statistically significantly so.
Conclusions: Both tasks were more difficult for those with communication impairments compared with peers. Semantic but not inferencing abilities showed a nonâsignificant trend for differences between the two clinical groups and children with pragmatic difficulties performed more poorly than all typically developing groups. The tasks may relate to each other in varying ways according to type of communication difficulty
Symmetries, Cluster Synchronization, and Isolated Desynchronization in Complex Networks
Synchronization is of central importance in power distribution,
telecommunication, neuronal, and biological networks. Many networks are
observed to produce patterns of synchronized clusters, but it has been
difficult to predict these clusters or understand the conditions under which
they form, except for in the simplest of networks. In this article, we shed
light on the intimate connection between network symmetry and cluster
synchronization. We introduce general techniques that use network symmetries to
reveal the patterns of synchronized clusters and determine the conditions under
which they persist. The connection between symmetry and cluster synchronization
is experimentally explored using an electro-optic network. We experimentally
observe and theoretically predict a surprising phenomenon in which some
clusters lose synchrony while leaving others synchronized. The results could
guide the design of new power grid systems or lead to new understanding of the
dynamical behavior of networks ranging from neural to social
Complete Characterization of Stability of Cluster Synchronization in Complex Dynamical Networks
Synchronization is an important and prevalent phenomenon in natural and
engineered systems. In many dynamical networks, the coupling is balanced or
adjusted in order to admit global synchronization, a condition called Laplacian
coupling. Many networks exhibit incomplete synchronization, where two or more
clusters of synchronization persist, and computational group theory has
recently proved to be valuable in discovering these cluster states based upon
the topology of the network. In the important case of Laplacian coupling,
additional synchronization patterns can exist that would not be predicted from
the group theory analysis alone. The understanding of how and when clusters
form, merge, and persist is essential for understanding collective dynamics,
synchronization, and failure mechanisms of complex networks such as electric
power grids, distributed control networks, and autonomous swarming vehicles. We
describe here a method to find and analyze all of the possible cluster
synchronization patterns in a Laplacian-coupled network, by applying methods of
computational group theory to dynamically-equivalent networks. We present a
general technique to evaluate the stability of each of the dynamically valid
cluster synchronization patterns. Our results are validated in an electro-optic
experiment on a 5 node network that confirms the synchronization patterns
predicted by the theory.Comment: 6 figure
Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at micrometer scale
We report on the observation of Bloch oscillations on the unprecedented time
scale of severalseconds. The experiment is carried out with ultra-cold bosonic
strontium-88 loaded into a vertical optical standing wave. The negligible
atom-atom elastic cross section and the absence of spin makes Sr an
almost ideal Bose gas insensitive to typical mechanisms of decoherence due to
thermalization and to external stray fields. The small size enables precision
measurements of forces at micrometer scale. This is a challenge in physics for
studies of surfaces, Casimir effects, and searches for deviations from
Newtonian gravity predicted by theories beyond the standard model
Quantum test of the equivalence principle for atoms in superpositions of internal energy eigenstates
The Einstein Equivalence Principle (EEP) has a central role in the
understanding of gravity and space-time. In its weak form, or Weak Equivalence
Principle (WEP), it directly implies equivalence between inertial and
gravitational mass. Verifying this principle in a regime where the relevant
properties of the test body must be described by quantum theory has profound
implications. Here we report on a novel WEP test for atoms. A Bragg atom
interferometer in a gravity gradiometer configuration compares the free fall of
rubidium atoms prepared in two hyperfine states and in their coherent
superposition. The use of the superposition state allows testing genuine
quantum aspects of EEP with no classical analogue, which have remained
completely unexplored so far. In addition, we measure the Eotvos ratio of atoms
in two hyperfine levels with relative uncertainty in the low ,
improving previous results by almost two orders of magnitude.Comment: Accepted for publication in Nature Communicatio
Synchronization of dynamical hypernetworks: dimensionality reduction through simultaneous block-diagonalization of matrices
We present a general framework to study stability of the synchronous solution
for a hypernetwork of coupled dynamical systems. We are able to reduce the
dimensionality of the problem by using simultaneous block-diagonalization of
matrices. We obtain necessary and sufficient conditions for stability of the
synchronous solution in terms of a set of lower-dimensional problems and test
the predictions of our low-dimensional analysis through numerical simulations.
Under certain conditions, this technique may yield a substantial reduction of
the dimensionality of the problem. For example, for a class of dynamical
hypernetworks analyzed in the paper, we discover that arbitrarily large
networks can be reduced to a collection of subsystems of dimensionality no more
than 2. We apply our reduction techique to a number of different examples,
including a class of undirected unweighted hypermotifs of three nodes.Comment: 9 pages, 6 figures, accepted for publication in Phys. Rev.
- âŠ