58 research outputs found

    Generating Non-Linear Interpolants by Semidefinite Programming

    Full text link
    Interpolation-based techniques have been widely and successfully applied in the verification of hardware and software, e.g., in bounded-model check- ing, CEGAR, SMT, etc., whose hardest part is how to synthesize interpolants. Various work for discovering interpolants for propositional logic, quantifier-free fragments of first-order theories and their combinations have been proposed. However, little work focuses on discovering polynomial interpolants in the literature. In this paper, we provide an approach for constructing non-linear interpolants based on semidefinite programming, and show how to apply such results to the verification of programs by examples.Comment: 22 pages, 4 figure

    On Deciding Local Theory Extensions via E-matching

    Full text link
    Satisfiability Modulo Theories (SMT) solvers incorporate decision procedures for theories of data types that commonly occur in software. This makes them important tools for automating verification problems. A limitation frequently encountered is that verification problems are often not fully expressible in the theories supported natively by the solvers. Many solvers allow the specification of application-specific theories as quantified axioms, but their handling is incomplete outside of narrow special cases. In this work, we show how SMT solvers can be used to obtain complete decision procedures for local theory extensions, an important class of theories that are decidable using finite instantiation of axioms. We present an algorithm that uses E-matching to generate instances incrementally during the search, significantly reducing the number of generated instances compared to eager instantiation strategies. We have used two SMT solvers to implement this algorithm and conducted an extensive experimental evaluation on benchmarks derived from verification conditions for heap-manipulating programs. We believe that our results are of interest to both the users of SMT solvers as well as their developers

    Efficient Interpolation for the Theory of Arrays

    Full text link
    Existing techniques for Craig interpolation for the quantifier-free fragment of the theory of arrays are inefficient for computing sequence and tree interpolants: the solver needs to run for every partitioning (A,B)(A, B) of the interpolation problem to avoid creating ABAB-mixed terms. We present a new approach using Proof Tree Preserving Interpolation and an array solver based on Weak Equivalence on Arrays. We give an interpolation algorithm for the lemmas produced by the array solver. The computed interpolants have worst-case exponential size for extensionality lemmas and worst-case quadratic size otherwise. We show that these bounds are strict in the sense that there are lemmas with no smaller interpolants. We implemented the algorithm and show that the produced interpolants are useful to prove memory safety for C programs.Comment: long version of the paper at IJCAR 201

    Obtaining Finite Local Theory Axiomatizations via Saturation

    No full text
    In this paper we present a method for obtaining local sets of clauses from possibly non-local ones. For this, we follow the work of Basin and Ganzinger and use saturation under a version of ordered resolution. In order to address the fact that saturation can generate infinite sets of clauses, we use constrained clauses and show that a link can be established between saturation and locality also for constrained clauses: This often allows us to give a finite representation of possibly infinite saturated sets of clauses

    Obtaining Finite Local Theory Axiomatizations via Saturation

    No full text
    In this paper we study theory combinations over non-disjoint signatures in which hierarchical and modular reasoning is possible. We use a notion of locality of a theory extension parameterized by a closure operator on ground terms. We give criteria for recognizing these types of theory extensions. We then show that combinations of extensions of theories which are local in this extended sense have also a locality property and hence allow modular and hierarchical reasoning. We thus obtain parameterized decidability and complexity results for many (combinations of) theories important in verification

    Decidability of Verification of Safety Properties of Spatial Families of Linear Hybrid Automata

    No full text

    Magnetocaloric effect in Ni-Fe-Ga Heusler alloys with Co and Al substitutions

    No full text
    The functionality of the ferromagnetic shape memory alloys is related to the martensitic and magnetic order-disorder transformations, both of which may be tailored by doping with other elements or by suitable thermal treatments, so that alloys with concomitant (or sequential but close) structural and magnetic phase transitions may be obtained. Concerning the magnetocaloric applications, it is assumed that the thin melt-spun ribbons assure a more efficient heat transfer. In the present work we investigate the influence of Co and Al substitutions on magnetocaloric effect characteristics of NiFeGa in bulk and also in ribbons prepared by melt spinning method and subjected to different thermal treatments. X-ray diffraction, differential scanning calorimetry, magnetocaloric and magnetoresistive characterizations have been performed. The results highlight the differences between the bulk and the ribbons (both as prepared and annealed) and the role of substitutions
    corecore