53 research outputs found

    Antioxidant intervention in rheumatoid arthritis: results of an open pilot study

    Get PDF
    There is evidence that reactive oxygen species play a causal role in auto-immune diseases, such as rheumatoid arthritis (RA). Despite the supporting evidence for a beneficial effect of antioxidants on clinical characteristics of RA, the right balance for optimal effectiveness of antioxidants is largely unknown. To determine the potential beneficial effects of an antioxidant intervention on clinical parameters for RA, an open pilot study was designed. Eight non-smoking female patients with rheumatoid factor + RA and a Disease Activity Score (DAS 28) higher than 2.5 were enrolled in the study. Patients had to be receiving stable non-steroidal anti-inflammatory drug treatment and/or ‘second line’ medication for at least 3 months. The pilot group consumed 20 g of antioxidant-enriched spread daily during a period of 10 weeks. The intervention was stopped after 10 weeks and was followed by a ‘wash-out’ period of 4 weeks. At t = 0, t = 10 weeks and t = 14 weeks, patients’ condition was assessed by means of DAS. In addition, standard laboratory analyses were performed, and blood-samples for antioxidants were taken. The antioxidant-enriched spread was well tolerated. All laboratory measures of inflammatory activity and oxidative modification were generally unchanged. However, the number of swollen and painful joints were significantly decreased and general health significantly increased, as reflected by a significantly improved (1.6) DAS at t = 10 weeks. The antioxidant effect was considered beneficial as, compared to the scores at t = 0, the DAS significantly reduced at t = 10 weeks. Increase of the DAS (0.7) after the “wash-out period” at t = 14 confirmed a causal relation between changes in clinical condition and antioxidants. This open pilot study aimed to assess the clinical relevance of an antioxidant intervention as a first step in assessing potential beneficial effects of antioxidants on rheumatoid arthritis. These conclusions need to be validated in a larger controlled study population

    Antioxidant profiles and selected parameters of primary metabolism in Physalis ixocarpa hairy roots transformed by two Agrobacterium rhizogenes strains

    No full text
    We compared the biochemical profiles of Physalis ixocarpa hairy roots transformed with Agrobacterium rhizogenes ATCC and A4 strains with non-transformed root cultures. The studied clones of A4- and ATCC-induced hairy roots differed significantly; the latter showed greater growth potential and greater ability to produce secondary metabolites (tropane alkaloids) and to biotransform hydroquinone to arbutin. We compared glucose content, alanine and aspartate aminotransferase activity, and L-phenylalanine ammonia-lyase activity. We analyzed markers of prooxidant/antioxidant homeostasis: catalase, ascorbate peroxidase, oxidase, glutathione peroxidase and transferase activity, and the levels of ascorbate, glutathione, tocopherol and lipid peroxidation. We found that transformation induced strain-specific regulation, including regulation based on redox signals, determining the rate of allocation of carbon and nitrogen resources to secondary metabolism pathways. Our results provide evidence that A. rhizogenes strain-specific modification of primary metabolites contributed to regulation of secondary metabolism and could determine the ability of P. ixocarpa hairy root clones to produce tropane alkaloids and to convert exogenously applied hydroquinone to pharmaceutically valuable arbutin. Of the studied parameters, glucose content, L-phenylalanine ammonia-lyase activity and alanine aminotransferases activity may be indicators of the secondary metabolite-producing potential of different P. ixocarpa hairy root clones
    corecore