21 research outputs found

    A T-cell antigen atlas for meningioma: novel options for immunotherapy

    Full text link
    Meningiomas are the most common primary intracranial tumors. Although most symptomatic cases can be managed by surgery and/or radiotherapy, a relevant number of patients experience an unfavorable clinical course and additional treatment options are needed. As meningiomas are often perfused by dural branches of the external carotid artery, which is located outside the blood-brain barrier, they might be an accessible target for immunotherapy. However, the landscape of naturally presented tumor antigens in meningioma is unknown. We here provide a T-cell antigen atlas for meningioma by in-depth profiling of the naturally presented immunopeptidome using LC-MS/MS. Candidate target antigens were selected based on a comparative approach using an extensive immunopeptidome data set of normal tissues. Meningioma-exclusive antigens for HLA class I and II are described here for the first time. Top-ranking targets were further functionally characterized by showing their immunogenicity through in vitro T-cell priming assays. Thus, we provide an atlas of meningioma T-cell antigens which will be publicly available for further research. In addition, we have identified novel actionable targets that warrant further investigation as an immunotherapy option for meningioma

    Integrin inhibition promotes atypical anoikis in glioma cells

    Full text link
    Integrins regulate cellular adhesion and transmit signals important for cell survival, proliferation and motility. They are expressed by glioma cells and may contribute to their malignant phenotype. Integrin inhibition may therefore represent a promising therapeutic strategy. GL-261 and SMA-560 glioma cells grown under standard conditions uniformly detached and formed large cell clusters after integrin gene silencing or pharmacological inhibition using EMD-121974, a synthetic Arg-Gly-Asp-motif peptide, or GLPG0187, a nonpeptidic integrin inhibitor. After 120 h, the clusters induced by integrin inhibition decayed and cells died. In contrast, when cells were cultured under stem cell (sphere) conditions, no disaggregation became apparent upon integrin inhibition, and cell death was not observed. As poly-HEMA-mediated detachment had similar effects on cell viability as integrin inhibition, we postulated that cell death may result from detachment alone, which was confirmed using various permissive and nonpermissive substrates. No surrogate markers of apoptosis were detected and electron microscopy confirmed that necrosis represents the dominant morphology of detachment-induced cell death. In addition, integrin inhibition resulted in the induction of autophagy that represents a survival signal. When integrins were inhibited in nonsphere glioma cells, the TGF-β pathway was strongly impaired, whereas no such effect was observed in glioma cells cultured under sphere conditions. Cell death induced by integrin inhibition was rescued by the addition of recombinant transforming growth factor-β (TGF-β) and accelerated by exposure to the TGF-β receptor inhibitor, SD-208. In summary, cell death following integrin inhibition is detachment mediated, represents an atypical form of anoikis involving necrosis as well as autophagy, and is modulated by TGF-β pathway activity

    Interferon-β induces loss of spherogenicity and overcomes therapy resistance of glioblastoma stem cells

    Full text link
    Glioblastoma is the most common malignant brain tumor in adults and characterized by a poor prognosis. Glioma cells expressing O(6)-methylguanine DNA methyltransferase (MGMT) exhibit a higher level of resistance toward alkylating agents, including the standard of care chemotherapeutic agent temozolomide. Here, we demonstrate that long-term glioma cell lines (LTL) as well as glioma-initiating cell lines (GIC) express receptors for the immune modulatory cytokine IFN-β and respond to IFN-β with induction of STAT-3 phosphorylation. Exposure to IFN-β induces a minor loss of viability, but strongly interferes with sphere formation in GIC cultures. Furthermore, IFN-β sensitizes LTL and GIC to temozolomide and irradiation. RNA interference confirmed that both IFN-β receptors, R1 and R2, are required for IFN-β-mediated sensitization, but that sensitization is independent of MGMT or TP53. Most GIC lines are highly temozolomide-resistant, mediated by MGMT expression, but nevertheless susceptible to IFN-β sensitization. Gene expression profiling following IFN-β treatment revealed strong upregulation of IFN-β-associated genes, including a proapoptotic gene cluster, but did not alter stemness-associated expression signatures. Caspase activity and inhibition studies revealed the proapoptotic genes to mediate glioma cell sensitization to exogenous death ligands by IFN-β, but not to temozolomide or irradiation, indicating distinct pathways of death sensitization mediated by IFN-β. Thus, IFN-β is a potential adjunct to glioblastoma treatment that may target the GIC population. IFN-β operates independently of MGMT-mediated resistance, classical apoptosis-regulatory networks, and stemness-associated gene clusters. Mol Cancer Ther; 13(4); 948-61. ©2014 AACR

    The aryl hydrocarbon receptor links integrin signaling to the TGF-β pathway

    Full text link
    Glioblastoma is the most common and aggressive form of intrinsic brain tumor. Transforming growth factor (TGF)-β represents a central mediator of the malignant phenotype of these tumors by promoting invasiveness and angiogenesis, maintaining tumor cell stemness and inducing profound immunosuppression. Integrins, which are highly expressed in glioma cells, interact with the TGF-β pathway. Furthermore, a link has been described between activity of the transcription factor aryl hydrocarbon receptor (AhR) and TGF-β expression. Here we demonstrate that integrin inhibition, using αv, β3 or β5 neutralizing antibodies, RNA interference-mediated integrin gene silencing or pharmacological inhibition by the cyclic RGD peptide EMD 121974 (cilengitide) or the non-peptidic molecule GLPG0187, inhibits AhR activity. These effects are independent of cell detachment or cell density. While AhR mRNA expression was not affected by integrin inhibition, AhR total and nuclear protein levels were reduced, suggesting that integrin inhibition-mediated regulation of AhR may occur at a post-transcriptional level. AhR-null astrocytes, AhR-null hepatocytes or glioblastoma cells with a transiently silenced AhR gene showed reduced sensitivity to integrin inhibition-mediated alterations in TGF-β signaling, indicating that AhR mediates integrin control of the TGF-β pathway. Accordingly, there was a significant correlation of αv integrin levels with nuclear AhR and pSmad2 levels as determined by immunohistochemistry in human glioblastoma in vivo. In summary, this study identifies a signaling network comprising integrins, AhR and TGF-β and validates integrin inhibition as a promising strategy not only to inhibit angiogenesis, but also to block AhR- and TGF-β-controlled features of malignancy in human glioblastoma.Oncogene advance online publication, 26 October 2015; doi:10.1038/onc.2015.387
    corecore