360 research outputs found
Optimality of mutation and selection in germinal centers
The population dynamics theory of B cells in a typical germinal center could
play an important role in revealing how affinity maturation is achieved.
However, the existing models encountered some conflicts with experiments. To
resolve these conflicts, we present a coarse-grained model to calculate the B
cell population development in affinity maturation, which allows a
comprehensive analysis of its parameter space to look for optimal values of
mutation rate, selection strength, and initial antibody-antigen binding level
that maximize the affinity improvement. With these optimized parameters, the
model is compatible with the experimental observations such as the ~100-fold
affinity improvements, the number of mutations, the hypermutation rate, and the
"all or none" phenomenon. Moreover, we study the reasons behind the optimal
parameters. The optimal mutation rate, in agreement with the hypermutation rate
in vivo, results from a tradeoff between accumulating enough beneficial
mutations and avoiding too many deleterious or lethal mutations. The optimal
selection strength evolves as a balance between the need for affinity
improvement and the requirement to pass the population bottleneck. These
findings point to the conclusion that germinal centers have been optimized by
evolution to generate strong affinity antibodies effectively and rapidly. In
addition, we study the enhancement of affinity improvement due to B cell
migration between germinal centers. These results could enhance our
understandings to the functions of germinal centers.Comment: 5 figures in main text, and 4 figures in Supplementary Informatio
Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells
In this review we start with a historical perspective beginning with the early morphological work done almost 50 years ago. The importance of these pioneering studies is underscored by our brief summary of the key questions addressed by subsequent research into the mechanism of secretion. We then highlight important advances in our understanding of the formation and maturation of neuroendocrine secretory granules, first using in vitro reconstitution systems, then most recently biochemical approaches, and finally genetic manipulations in vitro and in vivo
IgM memory B cells: a mouse/human paradox
Humoral memory is maintained by two types of persistent cells, memory B cells and plasma cells, which have different phenotypes and functions. Long-lived plasma cells can survive for a lifespan within a complex niche in the bone marrow and provide continuous protective serum antibody levels. Memory B cells reside in secondary lymphoid organs, where they can be rapidly mobilized upon a new antigenic encounter. Surface IgG has long been taken as a surrogate marker for memory in the mouse. Recently, however, we have brought evidence for a long-lived IgM memory B cell population in the mouse, while we have also argued that, in humans, these same cells are not classical memory B cells but marginal zone (MZ) B cells which, as opposed to their mouse MZ counterpart, recirculate and carry a mutated B cell receptor. In this review, we will discuss these apparently paradoxical results
The “conscious pilot”—dendritic synchrony moves through the brain to mediate consciousness
Cognitive brain functions including sensory processing and control of behavior are understood as “neurocomputation” in axonal–dendritic synaptic networks of “integrate-and-fire” neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendritic–dendritic gap junctions, forming transient syncytia (“dendritic webs”) in input/integration layers oriented sideways to axonal–dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The “conscious pilot” is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation
- …