57 research outputs found
Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at TeV
Inclusive transverse momentum spectra of primary charged particles in Pb-Pb
collisions at = 2.76 TeV have been measured by the ALICE
Collaboration at the LHC. The data are presented for central and peripheral
collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross
section. The measured charged particle spectra in and GeV/ are compared to the expectation in pp collisions at the same
, scaled by the number of underlying nucleon-nucleon
collisions. The comparison is expressed in terms of the nuclear modification
factor . The result indicates only weak medium effects ( 0.7) in peripheral collisions. In central collisions,
reaches a minimum of about 0.14 at -7GeV/ and increases
significantly at larger . The measured suppression of high- particles is stronger than that observed at lower collision energies,
indicating that a very dense medium is formed in central Pb-Pb collisions at
the LHC.Comment: 15 pages, 5 captioned figures, 3 tables, authors from page 10,
published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/98
Two-pion Bose-Einstein correlations in central Pb-Pb collisions at = 2.76 TeV
The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb
collisions at TeV at the Large Hadron Collider is
presented. We observe a growing trend with energy now not only for the
longitudinal and the outward but also for the sideward pion source radius. The
pion homogeneity volume and the decoupling time are significantly larger than
those measured at RHIC.Comment: 17 pages, 5 captioned figures, 1 table, authors from page 12,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/388
Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil
Plant-microbe interactions are considered to be important processes determining
the efficiency of phytoremediation of petroleum pollution, however relatively
little is known about how these interactions are influenced by petroleum
pollution. In this experimental study using a microcosm approach, we examined
how plant ecophysiological traits, soil nutrients and microbial activities were
influenced by petroleum pollution in Phragmites australis, a
phytoremediating species. Generally, petroleum pollution reduced plant
performance, especially at early stages of plant growth. Petroleum had negative
effects on the net accumulation of inorganic nitrogen from its organic forms
(net nitrogen mineralization (NNM)) most likely by decreasing the inorganic
nitrogen available to the plants in petroleum-polluted soils. However, abundant
dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order
to overcome initial deficiency of inorganic nitrogen, plants by dint of high
colonization of arbuscular mycorrhizal fungi might absorb some DON for their
growth in petroleum-polluted soils. In addition, through using a real-time
polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial
traits based on their catabolic genes (i.e. alkB (alkane
monooxygenase), nah (naphthalene dioxygenase) and
tol (xylene monooxygenase) genes). This enumeration of
target genes suggests that different hydrocarbon-degrading bacteria experienced
different dynamic changes during phytoremediation and a greater abundance of
alkB was detected during vegetative growth stages. Because
phytoremediation of different components of petroleum is performed by different
hydrocarbon-degrading bacteria, plants’ ability of phytoremediating
different components might therefore vary during the plant life cycle.
Phytoremediation might be most effective during the vegetative growth stages as
greater abundances of hydrocarbon-degrading bacteria containing
alkB and tol genes were observed at these
stages. The information provided by this study enhances our understanding of the
effects of petroleum pollution on plant-microbe interactions and the roles of
these interactions in the phytoremediation of petroleum-polluted soil
Acquisition and Evolution of Plant Pathogenesis–Associated Gene Clusters and Candidate Determinants of Tissue-Specificity in Xanthomonas
is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. lineage. genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or in non-coding sequences, and/or differences outside the clusters, potentially among regulatory targets or secretory substrates
MtDNA-maintenance defects: syndromes and genes
A large group of mitochondrial disorders, ranging from early-onset pediatric encephalopathic syndromes to late-onset myopathy with chronic progressive external ophthalmoplegia (CPEOs), are inherited as Mendelian disorders characterized by disturbed mitochondrial DNA (mtDNA) maintenance. These errors of nuclear-mitochondrial intergenomic signaling may lead to mtDNA depletion, accumulation of mtDNA multiple deletions, or both, in critical tissues. The genes involved encode proteins belonging to at least three pathways: mtDNA replication and maintenance, nucleotide supply and balance, and mitochondrial dynamics and quality control. In most cases, allelic mutations in these genes may lead to profoundly different phenotypes associated with either mtDNA depletion or multiple deletions.
Communicated by: Shamima Rahman
Presented at the Annual Symposium of the Society for the Study of Inborn Errors of Metabolism, Rome, Italy, September 6–9, 2016This work was supported by: ERC FP7-322424 grant (to MZ), CoEN grant 3038 (to MZ and CV) and the MRC core grant to the Mitochondrial Biology Unit
- …