172 research outputs found

    Aplication of Frequency Map Analysis to Beam-Beam Effects Study in Crab Waist Collision Scheme

    Full text link
    We applied Frequency Map Analysis (FMA) - a method that is widely used to explore dynamics of Hamiltonian systems - to beam-beam effects study. The method turned out to be rather informative and illustrative in the case of a novel Crab Waist collision approach, when "crab" focusing of colliding beams results in significant suppression of betatron coupling resonances. Application of FMA provides visible information about all working resonances, their widths and locations in the planes of betatron tunes and betatron amplitudes, so the process of resonances suppression due to the beams crabbing is clearly seen.Comment: 11 pages, 10 figure

    Crab Waist Collision Studies for e+e- Factories

    Get PDF
    Numerical simulations have shown that the recently proposed "crab waist" scheme of beam-beam collisions can substantially boost the luminosity of existing and future electron-positron colliders. In this paper we describe the crab waist concept and discuss potential advantages that such a scheme can provide. We also present the results of beam-beam simulations for the two currently proposed projects based on the crab waist scheme: the DAFNE upgrade and the Super B-factory project.Comment: Invited talk at IR07 Workshop (Interaction Regions for the LHC Upgrade, DAFNE and SuperB), 7-9 November 2007, Frascati, Ital

    Simulation of Beam-Beam Effects and Tevatron Experience

    Full text link
    Effects of electromagnetic interactions of colliding bunches in the Tevatron had a variety of manifestations in beam dynamics presenting vast opportunities for development of simulation models and tools. In this paper the computer code for simulation of weak-strong beam-beam effects in hadron colliders is described. We report the collider operational experience relevant to beam-beam interactions, explain major effects limiting the collider performance and compare results of observations and measurements with simulations.Comment: 23 pages, 17 figure

    Design of beam optics for the Future Circular Collider e+e- -collider rings

    Full text link
    A beam optics scheme has been designed for the Future Circular Collider-e+e- (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [1] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [2] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than +/-2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further study
    • …
    corecore