25 research outputs found

    Not gate in a cis-trans photoisomerization model

    Full text link
    We numerically study the implementation of a NOT gate by laser pulses in a model molecular system presenting two electronic surfaces coupled by non adiabatic interactions. The two states of the bit are the fundamental states of the cis-trans isomers of the molecule. The gate is classical in the sense that it involves a one-qubit flip so that the encoding of the outputs is based on population analysis which does not take the phases into account. This gate can also be viewed as a double photo-switch process with the property that the same electric field controls the two isomerizations. As an example, we consider one-dimensional cuts in a model of the retinal in rhodopsin already proposed in the literature. The laser pulses are computed by the Multi Target Optimal Control Theory with chirped pulses as trial fields. Very high fidelities are obtained. We also examine the stability of the control when the system is coupled to a bath of oscillators modelled by an Ohmic spectral density. The bath correlation time scale being smaller than the pulse duration the dynamics is carried out in the Markovian approximation.Comment: 29 pages, 7 figure

    Quantum Driven Dissipative Parametric Oscillator in a Blackbody Radiation Field

    Full text link
    We consider the general open system problem of a charged quantum oscillator confined in a harmonic trap, whose frequency can be arbitrarily modulated in time, that interacts with both an incoherent quantized (blackbody) radiation field and with an arbitrary coherent laser field. We assume that the oscillator is initially in thermodynamic equilibrium with its environment, a non-factorized initial density matrix of the system and the environment, and that at t=0t=0 the modulation of the frequency, the coupling to the incoherent and the coherent radiation are switched on. The subsequent dynamics, induced by the presence of the blackbody radiation and the laser field, is studied in the framework of the influence functional approach. This approach allows incorporating, in \emph{analytic closed formulae}, the non-Markovian character of the oscillator-environment interaction at any temperature as well the non-Markovian character of the blackbody radiation and its zero-point fluctuations. Expressions for the time evolution of the covariance matrix elements of the quantum fluctuations and the reduced density-operator are obtained.Comment: 11 pages. It matches the published versio

    Coherent Control of Isotope Separation in HD+ Photodissociation by Strong Fields

    Full text link
    The photodissociation of the HD+ molecular ion in intense short- pulsed linearly polarized laser fields is studied using a time- dependent wave-packet approach where molecular rotation is fully included. We show that applying a coherent superposition of the fundamental radiation with its second harmonic can lead to asymmetries in the fragment angular distributions, with significant differences between the hydrogen and deuterium distributions in the long wavelength domain where the permanent dipole is most efficient. This effect is used to induce an appreciable isotope separation.Comment: Physical Review Letters, 1995 (in press). 4 pages in revtex format, 3 uuencoded figures. Full postcript version available at: http://chemphys.weizmann.ac.il/~charron/prl.ps or ftp://scipion.ppm.u-psud.fr/coherent.control/prl.p
    corecore