48 research outputs found

    A Voltage Calibration Chain for Meters Used in Measurements of EV Inductive Power Charging

    Full text link
    The inductive charging of electric vehicles requires specific measurement and calibration systems. In fact, the measurement of power on board involves DC signals, which are superimposed to a significant AC ripple up to or over 150 kHz, depending on the type of charging system. A calibration method that makes use of a phantom power, based on two independent but synchronized circuits, is considered, simulating the charging voltage and current. This paper describes in detail a solution in the realization of the voltage calibration chain, based on the use of a DC voltage calibrator, an injector and a voltage divider.Comment: 2 pages, Conference on Precision Electromagnetic Measurements (CPEM 2018), Paris

    Wideband digital phase comparator for high current shunts

    Full text link
    A wideband phase comparator for precise measurements of phase difference of high current shunts has been developed at INRIM. The two-input digital phase detector is realized with a precision wideband digitizer connected through a pair of symmetric active guarded transformers to the outputs of the shunts under comparison. Data are first acquired asynchronously, and then transferred from on-board memory to host memory. Because of the large amount of data collected the filtering process and the analysis algorithms are performed outside the acquisition routine. Most of the systematic errors can be compensated by a proper inversion procedure. The system is suitable for comparing shunts in a wide range of currents, from several hundred of milliampere up to 100 A, and frequencies ranging between 500 Hz and 100 kHz. Expanded uncertainty (k=2) less than 0.05 mrad, for frequency up to 100 kHz, is obtained in the measurement of the phase difference of a group of 10 A shunts, provided by some European NMIs, using a digitizer with sampling frequency up to 1 MHz. An enhanced version of the phase comparator employs a new digital phase detector with higher sampling frequency and vertical resolution. This permits to decrease the contribution to the uncertainty budget of the phase detector of a factor two from 20 kHz to 100 kHz. Theories and experiments show that the phase difference between two high precision wideband digitizers, coupled as phase detector, depends on multiple factors derived from both analog and digital imprint of each sampling system.Comment: 20 pages, 9 figure

    Design and development of a coaxial cryogenic probe for precision measurements of the quantum hall effect in the ac regime

    Get PDF
    The quantum Hall effect is the basis for the realisation of the resistance and impedance units in the International System of units since 2019. This paper describes a cryogenic probe that allows to set graphene Hall devices in quantisation conditions in a helium bath (4.2 K) and magnetic fields up to 6 T, to perform precision measurements in the AC regime with impedance bridges. The probe has a full coaxial wiring, isolated from the probe structure, and holds the device in a TO-8 socket. First, characterization experiments are reported on a GaAs device, showing quantisation at 5.5 T. In the AC regime, multiple-series connections will be employed to minimize the residual error, quantified by electrical modelling of the probe

    How underground systems can contribute to meet the challenges of energy transition

    Get PDF
    The paper provides an overview of the several scientific and technical issues and challenges to be addressed for underground storage of carbon dioxide, hydrogen and mixtures of hydrogen and natural gas. The experience gained on underground energy systems and materials is complemented by new competences to adequately respond to the new needs raised by transition from fossil fuels to renewables. The experimental characterization and modeling of geological formations (including geochemical and microbiological issues), fluids and fluid-flow behavior and mutual interactions of all the systems components at the thermodynamic conditions typical of underground systems as well as the assessment and monitoring of safety conditions of surface facilities and infrastructures require a deeply integrated teamwork and fit-for-purpose laboratories to support theoretical research. The group dealing with large-scale underground energy storage systems of Politecnico di Torino has joined forces with the researchers of the Center for Sustainable Future Technologies of the Italian Institute of Technology, also based in Torino, to meet these new challenges of the energy transition era, and evidence of the ongoing investigations is provided in this paper

    Nonlinear Oscillations in a Microelectromechanical System

    No full text
    The dynamics of an electret-based, capacitive micro- converter is described by a nonlinear set of ODEs, where the equation of a damped, driven oscillator is coupled, through a non linear term, to two first-order, non-linear differential equations. The system, which can admit pe- riodic, steady-state solutions, exhibits behaviors typical of non-linear, Duffing-like oscillators, as jump phenom- ena and hysteretic frequency response curves. In fact, for particular combinations of the physical parameters of the system, multiple steady-state solutions appear. The fre- quency response curves and the stability properties of the solutions are analyzed with a semianalytic approach. It is also proved, through perturbative analysis, that the system always acts as a linear oscillator under appropriate combi- nations of parameters: in this case the non-linear coupling term reduces to a viscouslike term, physically interpretable as electromechanical damping

    A novel approach to a quantitative estimate of permeability from resistivity log measurements

    No full text
    Description of the material. In this paper a novel methodology for the estimation of the formation permeability, based on the integration of resistivity modeling and near wellbore modeling, is presented. Results obtained from the application to a real case is shown and discussed. The well log interpretation process provides a reliable estimation of the main petrophysical parameters such as porosity, fluid saturations and shale content, but the formation permeability is traditionally obtained through laboratory tests on plugs, at the scale of centimeters, and through well test interpretation, at the scale of tens or hundreds of meters. However, log measurements, and in particular resistivity logs, are strongly affected by the presence of the near wellbore zone invaded by mud filtrate. In turn, the extension of the invaded zone depends on formation properties and, in particular, on permeability. As a consequence, the resistivity measured by the tools (the apparent resistivity) has to be properly corrected through a resistivity modeling process to obtain the true formation resistivity and the geometry and resistivity of the invaded zone. Resistivity profiles within the invaded zone are function of fluid properties, petrophysical properties and rock-fluid interaction properties. The novelty of the approach is to numerically simulate the mud invasion phenomenon and match the resistivity profile provided by resistivity modeling to estimate the formation permeability. In the proposed methodology the match of the resistivity profile is obtained by integrating the near wellbore simulator with an optimization algorithm. Application. This novel approach was applied to a heterogeneous shaly-sand oil-bearing reservoir in the Norwegian offshore area. The analyzed sequence was characterized by a high degree of variations in the layers' thickness, from meters down to below tools' vertical resolution. A complete set of wireline logs were acquired in the considered well; several cores were cut and routine and special core analyses performed. Results, Observations, and Conclusions. First, a conventional petrophysical characterization was achieved and the appropriate resistivity corrections were calculated. Then, the modeled resistivity was used as the input for the optimization algorithm so as to obtain a continuous quantitative estimation of permeability in the entire logged interval. The results were satisfactorily compared to core measurements: in both thick, conventional layers and thinner beds the match was very accurate. Significance of subject matter. The new approach provided a robust permeability estimate also in un-cored intervals and, more generally, can be used to predict permeability in un-cored and un-tested wells
    corecore