40 research outputs found

    Leptogenesis Scenarios via Non-Thermally Produced Right-handed Neutrino and Sneutrino in Supersymmetric Seesaw Model

    Full text link
    We reconsidered leptogenesis scenario from right-handed (s)neutrino produced by the decay of inflaton. Besides the well-investigated case that the neutrino decays instantaneously after the production, leptogenesis is possible if neutrino decays after it dominates the universe. In the latter case, right-handed (s)neutrino can decay either while it is relativistic or after it becomes non-relativistic. Especially, the first case has not been discussed seriously in literatures. Resultant lepton asymmetry and constraints from the gravitino problem are studied in broad parameter region, including all cases of this scenario. It is also shown how this leptogenesis scenario depends on the parameters, the inflaton decay rate (the reheating temperature), the right-handed neutrino mass, the washout parameter, and the constraint from the gravitino problem. Leptogenesis from relativistic neutrino decay is interesting because both thermal and non-thermal gravitino problems can be relaxed.Comment: 17 pages, 6 figure

    Light Higgs boson scenario in the SUSY seesaw model

    Full text link
    It is demonstrated that the light Higgs boson scenario, which the lightest Higgs mass is less than the LEP bound, mh > 114.4 GeV, is consistent with the SUSY seesaw model. With the assumptions of the universal right-handed neutrino mass and the hierarchical mass spectrum of the ordinary neutrinos, the bounds for the right-handed neutrino mass is investigated in terms of lepton flavor violating charged lepton decays. We also discuss the effect of the modification of renormalization group equations by the right-handed neutrinos on the b to s gamma process and the relic abundance of dark matter in the light Higgs boson scenario.Comment: 17 pages, 5 figure

    Affleck-Dine leptogenesis via multiscalar evolution in a supersymmetric seesaw model

    Full text link
    A leptogenesis scenario in a supersymmetric standard model extended with introducing right-handed neutrinos is reconsidered. Lepton asymmetry is produced in the condensate of a right-handed sneutrino via the Affleck-Dine mechanism. The LH_u direction develops large value due to a negative effective mass induced by the right-handed sneutrino condensate through the Yukawa coupling of the right-handed neutrino, even if the minimum during the inflation is fixed at the origin. The lepton asymmetry is nonperturbatively transfered to the LH_u direction by this Yukawa coupling.Comment: 19 pages, 3 figures. Revised version for publication. The model was modified to fix some problem

    Leptogenesis via multiscalar coherent evolution with supersymmetric neutrino see-saw

    Get PDF
    A novel scenario of leptogenesis is investigated in the supersymmetric neutrino see-saw model. The right-handed sneutrino N~ {\tilde N} and the ϕ \phi field in the L~Hu {\tilde L} H_u direction of the slepton and Higgs doublets start together coherent evolution after the inflation with right-handed neutrino mass MN M_N smaller than the Hubble parameter of inflation. Then, after some period the motion of N~ {\tilde N} and ϕ \phi is drastically changed by the cross coupling MNhνN~ϕϕ M_N h_\nu {\tilde N}^* \phi \phi from the MNNN M_N N N and hνNLHu h_\nu N L H_u terms, and the significant asymmetries of N~ {\tilde N} and L~ {\tilde L} are generated. The L~ {\tilde L} asymmetry is fixed later by the thermal effect as the lepton number asymmetry for baryogenesis, while the N~ {\tilde N} asymmetry disappears through the decays N~LˉH~ˉu,L~Hu {\tilde N} \to {\bar L} {\bar{\tilde H}}_u, {\tilde L} H_u with almost the same rate but opposite final lepton numbers.Comment: 4pages, 1 figure; submitted to Physical Review D. The renormalization group effects were include

    Spinless photon dark matter from two universal extra dimensions

    Full text link
    We explore the properties of dark matter in theories with two universal extra dimensions, where the lightest Kaluza-Klein state is a spin-0 neutral particle, representing a six-dimensional photon polarized along the extra dimensions. Annihilation of this 'spinless photon' proceeds predominantly through Higgs boson exchange, and is largely independent of other Kaluza-Klein particles. The measured relic abundance sets an upper limit on the spinless photon mass of 500 GeV, which decreases to almost 200 GeV if the Higgs boson is light. The phenomenology of this dark matter candidate is strikingly different from Kaluza-Klein dark matter in theories with one universal extra dimension. Elastic scattering of the spinless photon with quarks is helicity suppressed, making its direct detection challenging, although possible at upcoming experiments. The prospects for indirect detection with gamma rays and antimatter are similar to those of neutralinos. The rates predicted at neutrino telescopes are below the sensitivity of next-generation experiments.Comment: 22 pages. Figure 7 corrected, leading to improved prospects for direct detection. Some clarifying remarks include

    Affleck-Dine baryogenesis with modulated reheating

    Full text link
    Modulated reheating scenario is one of the most attractive models that predict possible detections of not only the primordial non-Gaussianity but also the tensor fluctuation through future CMB observations such as the Planck satellite, the PolarBeaR and the LiteBIRD satellite experiments. We study the baryonic-isocurvature fluctuations in the Affleck-Dine baryogenesis with the modulated reheating scenario. We show that the Affleck-Dine baryogenesis can be consistent with the modulated reheating scenario with respect to the current observational constraint on the baryonic-isocurvature fluctuations.Comment: 7 page

    Flavour Issues in Leptogenesis

    Full text link
    We study the impact of flavour in thermal leptogenesis, including the quantum oscillations of the asymmetries in lepton flavour space. In the Boltzmann equations we find different numerical factors and additional terms which can affect the results significantly. The upper bound on the CP asymmetry in a specific flavour is weaker than the bound on the sum. This suggests that -- when flavour dynamics is included -- there is no model-independent limit on the light neutrino mass scale,and that the lower bound on the reheat temperature is relaxed by a factor ~ (3 - 10).Comment: 19 pages, corrected equations for flavour oscillation

    Leptogenesis from a sneutrino condensate revisited

    Full text link
    We re--examine leptogenesis from a right--handed sneutrino condensate, paying special attention to the BB-term associated with the see--saw Majorana mass. This term generates a lepton asymmetry in the condensate whose time average vanishes. However, a net asymmetry will result if the sneutrino lifetime is not much longer than the period of oscillations. Supersymmetry breaking by thermal effects then yields a lepton asymmetry in the standard model sector after the condensate decays. We explore different possibilities by taking account of both the low--energy and Hubble BB-terms. It will be shown that the desired baryon asymmetry of the Universe can be obtained for a wide range of Majorana mass.Comment: 17 revtex pages, 3 figures, 1 table. Slightly modified and references added. Final version accepted for publication in Phys. Rev.

    Low energy antideuterons: shedding light on dark matter

    Get PDF
    Low energy antideuterons suffer a very low secondary and tertiary astrophysical background, while they can be abundantly synthesized in dark matter pair annihilations, therefore providing a privileged indirect dark matter detection technique. The recent publication of the first upper limit on the low energy antideuteron flux by the BESS collaboration, a new evaluation of the standard astrophysical background, and remarkable progresses in the development of a dedicated experiment, GAPS, motivate a new and accurate analysis of the antideuteron flux expected in particle dark matter models. To this extent, we consider here supersymmetric, universal extra-dimensions (UED) Kaluza-Klein and warped extra-dimensional dark matter models, and assess both the prospects for antideuteron detection as well as the various related sources of uncertainties. The GAPS experiment, even in a preliminary balloon-borne setup, will explore many supersymmetric configurations, and, eventually, in its final space-borne configuration, will be sensitive to primary antideuterons over the whole cosmologically allowed UED parameter space, providing a search technique which is highly complementary with other direct and indirect dark matter detection experiments.Comment: 26 pages, 7 figures; version to appear in JCA
    corecore