96 research outputs found
Left ventricular assist device and transcatheter edge-to-edge mitral valve repair in advanced heart failure: allies or enemies?
The implantation of left ventricular assist devices (LVADs) has been increasing, with good long-term results, in parallel with a growing population with advanced heart failure (HF). However, in some European countries, LVADs are still underused, with one of the main issues being the patient's late referral. On the contrary, the use of transcatheter edge-to-edge mitral valve repair (TEER) has exponentially increased over the past decade, expanding its potential use even in patients on the heart transplantation waiting list. Even though the study populations of the main trials that investigated the prognostic impact of LVAD and TEER are different, in clinical practice a clear distinction might not be so clear. Therefore, patients with refractory HF symptoms and significant mitral regurgitation should be thoroughly evaluated through a multidisciplinary Heart Team meeting with both an advanced HF specialist and interventional cardiologist, to avoid futile procedures and to define the optimal timing for advanced HF therapies, when they are indicated. We analyzed the main available studies and registries on both TEERs and LVADs and we compared their populations and outcomes, to provide the current evidence on the use of LVAD and TEER in the HF population, especially in the light of the recently released 5-year follow-up results, giving some insights on the Italian situation, and finally to stress the importance of a solid HF network between hospitals, aiming for advanced HF patients' timely referral for LVAD or heart transplants
When should cardiovascular prevention begin? The importance of antenatal, perinatal and primordial prevention
Cardiovascular diseases represent a major health problem, being one of the leading causes of morbidity and mortality worldwide. Therefore, in this scenario, cardiovascular prevention plays an essential role although it is difficult to establish when promoting and implementing preventive strategies. However, there is growing evidence that prevention should start even before birth, during pregnancy, aiming to avoid the onset of cardiovascular risk factors, since events that occur early in life have a great impact on the cardiovascular risk profile of an adult. The two pillars of this early preventive strategy are nutrition and physical exercise, together with prevention of cardio-metabolic diseases during pregnancy. This review attempts to gather the growing evidence of the benefits of antenatal, perinatal and primordial prevention, discussing also the possibility to reverse or to mitigate the cardiovascular profile developed in the initial stages of life. This could pave the way for future research, investigating the optimal time and duration of these preventing measures, their duration and maintenance in adulthood, and the most effective interventions according to the different age and guiding in the next years, the best clinical practice and the political strategies to cope with cardiovascular disease
Calcium-Activated Potassium Channels BK and IK1 Are Functionally Expressed in Human Gliomas but Do Not Regulate Cell Proliferation
Gliomas are morbid brain tumors that are extremely resistant to available chemotherapy and radiology treatments. Some studies have suggested that calcium-activated potassium channels contribute to the high proliferative potential of tumor cells, including gliomas. However, other publications demonstrated no role for these channels or even assigned them antitumorogenic properties. In this work we characterized the expression and functional contribution to proliferation of Ca2+-activated K+ channels in human glioblastoma cells. Quantitative RT-PCR detected transcripts for the big conductance (BK), intermediate conductance (IK1), and small conductance (SK2) K+ channels in two glioblastoma-derived cell lines and a surgical sample of glioblastoma multiforme. Functional expression of BK and IK1 in U251 and U87 glioma cell lines and primary glioma cultures was verified using whole-cell electrophysiological recordings. Inhibitors of BK (paxilline and penitrem A) and IK1 channels (clotrimazole and TRAM-34) reduced U251 and U87 proliferation in an additive fashion, while the selective blocker of SK channels UCL1848 had no effect. However, the antiproliferative properties of BK and IK1 inhibitors were seen at concentrations that were higher than those necessary to inhibit channel activity. To verify specificity of pharmacological agents, we downregulated BK and IK1 channels in U251 cells using gene-specific siRNAs. Although siRNA knockdowns caused strong reductions in the BK and IK1 current densities, neither single nor double gene silencing significantly affected rates of proliferation. Taken together, these results suggest that Ca2+-activated K+ channels do not play a critical role in proliferation of glioma cells and that the effects of pharmacological inhibitors occur through their off-target actions
Performance and first measurements of the MAGIC stellar intensity interferometer
In recent years, a new generation of optical intensity interferometers has emerged, leveraging the existing infrastructure of Imaging Atmospheric Cherenkov Telescopes (IACTs). The MAGIC telescopes host the MAGIC-SII system (Stellar Intensity Interferometer), implemented to investigate the feasibility and potential of this technique on IACTs. After the first successful measurements in 2019, the system was upgraded and now features a real-time, dead-time-free, 4-channel, GPU-based correlator. These hardware modifications allow seamless transitions between MAGIC’s standard very-high-energy gamma-ray observations and optical interferometry measurements within seconds. We establish the feasibility and potential of employing IACTs as competitive optical Intensity Interferometers with minimal hardware adjustments. The measurement of a total of 22 stellar diameters are reported, 9 corresponding to reference stars with previous comparable measurements, and 13 with no prior measurements. A prospective implementation involving telescopes from the forthcoming Cherenkov Telescope Array Observatory’s Northern hemisphere array, such as the first prototype of its Large-Sized Telescopes, LST-1, is technically viable. This integration would significantly enhance the sensitivity of the current system and broaden the UV-plane coverage. This advancement would enable the system to achieve competitive sensitivity with the current generation of long-baseline optical interferometers over blue wavelengths
Constraints on axion-like particles with the Perseus Galaxy Cluster with MAGIC
Axion-like particles (ALPs) are pseudo-Nambu-Goldstone bosons that emerge in
various theories beyond the standard model. These particles can interact with
high-energy photons in external magnetic fields, influencing the observed
gamma-ray spectrum. This study analyzes 41.3 hrs of observational data from the
Perseus Galaxy Cluster collected with the MAGIC telescopes. We focused on the
spectra the radio galaxy in the center of the cluster: NGC 1275. By modeling
the magnetic field surrounding this target, we searched for spectral
indications of ALP presence. Despite finding no statistical evidence of ALP
signatures, we were able to exclude ALP models in the sub-micro electronvolt
range. Our analysis improved upon previous work by calculating the full
likelihood and statistical coverage for all considered models across the
parameter space. Consequently, we achieved the most stringent limits to date
for ALP masses around 50 neV, with cross sections down to GeV.Comment: 25 pages, 10 figures, accepted for publication in Physics of the Dark
Univers
MAGIC detection of GRB 201216C at z = 1.1
Gamma-ray bursts (GRBs) are explosive transient events occurring at cosmological distances, releasing a large amount of energy as electromagnetic radiation over several energy bands. We report the detection of the long GRB 201216C by the MAGIC telescopes. The source is located at z = 1.1 and thus it is the farthest one detected at very high energies. The emission above 70 GeV of GRB 201216C is modelled together with multiwavelength data within a synchrotron and synchrotron self-Compton (SSC) scenario. We find that SSC can explain the broad-band data well from the optical to the very-high-energy band. For the late-time radio data, a different component is needed to account for the observed emission. Differently from previous GRBs detected in the very-high-energy range, the model for GRB 201216C strongly favours a wind-like medium. The model parameters have values similar to those found in past studies of the afterglows of GRBs detected up to GeV energies
Performance of the joint LST-1 and MAGIC observations evaluated with Crab Nebula data
Aims. Large-Sized Telescope 1 (LST-1), the prototype for the Large-Sized Telescope at the upcoming Cherenkov Telescope Array Observatory, is concluding its commissioning phase at the Observatorio del Roque de los Muchachos on the island of La Palma. The proximity of LST-1 to the two MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes makes it possible to carry out observations of the same gamma-ray events with both systems. Methods. We describe the joint LST-1+MAGIC analysis pipeline and used simultaneous Crab Nebula observations and Monte Carlo simulations to assess the performance of the three-telescope system. The addition of the LST-1 telescope allows for the recovery of events in which one of the MAGIC images is too dim to survive analysis quality cuts. Results. Thanks to the resulting increase in the collection area and stronger background rejection, we found a significant improvement in sensitivity, allowing for the detection of 30% weaker fluxes in the energy range between 200 GeV and 3 TeV. The spectrum of the Crab Nebula, reconstructed in the energy range between ∼60 GeV and ∼10 TeV, is in agreement with previous measurements
Multi-year characterisation of the broad-band emission from the intermittent extreme BL Lac 1ES 2344+514
Aims. The BL Lac 1ES 2344+514 is known for temporary extreme properties characterised by a shift of the synchrotron spectral energy distribution (SED) peak energy νsynch;p above 1 keV. While those extreme states have only been observed during high flux levels thus far, additional multi-year observing campaigns are required to achieve a coherent picture. Here, we report the longest investigation of the source from radio to very high energy (VHE) performed so far, focussing on a systematic characterisation of the intermittent extreme states. Methods.We organised a monitoring campaign covering a 3-year period from 2019 to 2021.Morethan ten instruments participated in the observations in order to cover the emission from radio to VHE. In particular, sensitive X-ray measurements by XMM-Newton, NuSTAR, and AstroSat took place simultaneously with multi-hour MAGIC observations, providing an unprecedented constraint of the two SED components for this blazar. Results. While our results confirm that 1ES 2344+514 typically exhibits νsynch;p > 1 keV during elevated flux periods, we also find periods where the extreme state coincides with low flux activity. A strong spectral variability thus happens in the quiescent state, and is likely caused by an increase in the electron acceleration efficiency without a change in the electron injection luminosity. On the other hand, we also report a strong X-ray flare (among the brightest for 1ES 2344+514) without a significant shift of νsynch;p. During this particular flare, the X-ray spectrum is among the softest of the campaign. It unveils complexity in the spectral evolution, where the common harder-when-brighter trend observed in BL Lacs is violated. By combining Swift-XRT and Swift-UVOT measurements during a low and hard X-ray state, we find an excess of the UV flux with respect to an extrapolation of the X-ray spectrum to lower energies. This UV excess implies that at least two regions significantly contribute to the infrared/optical/ultraviolet/X-ray emission. Using the simultaneous MAGIC, XMM-Newton, NuSTAR, and AstroSat observations, we argue that a region possibly associated with the 10 GHz radio core may explain such an excess. Finally, we investigate a VHE flare, showing an absence of simultaneous variability in the 0.3-2 keV band. Using time-dependent leptonic modelling, we show that this behaviour, in contradiction to single-zone scenarios, can instead be explained by a two-component model
Multi-year characterisation of the broad-band emission from the intermittent extreme BL Lac 1ES~2344+514
The BL Lac 1ES 2344+514 is known for temporary extreme properties (e.g., a
shift of the synchrotron SED peak energy above 1keV). While
those extreme states were so far observed only during high flux levels,
additional multi-year observing campaigns are required to achieve a coherent
picture. Here, we report the longest investigation of the source from radio to
VHE performed so far, focusing on a systematic characterisation of the
intermittent extreme states. While our results confirm that 1ES 2344+514
typically exhibits 1keV during elevated flux periods, we also
find periods where the extreme state coincides with low flux activity. A strong
spectral variability thus happens in the quiescent state, and is likely caused
by an increase of the electron acceleration efficiency without a change in the
electron injection luminosity. We also report a strong X-ray flare (among the
brightest for 1ES 2344+514) without a significant shift of .
During this particular flare, the X-ray spectrum is among the softest of the
campaign. It unveils complexity in the spectral evolution, where the common
harder-when-brighter trend observed in BL Lacs is violated. During a low and
hard X-ray state, we find an excess of the UV flux with respect to an
extrapolation of the X-ray spectrum to lower energies. This UV excess implies
that at least two regions contribute significantly to the
infrared/optical/ultraviolet/X-ray emission. Using the simultaneous MAGIC,
XMM-Newton, NuSTAR, and AstroSat observations, we argue that a region possibly
associated with the 10 GHz radio core may explain such an excess. Finally, we
investigate a VHE flare, showing an absence of simultaneous variability in the
0.3-2keV band. Using a time-dependent leptonic modelling, we show that this
behaviour, in contradiction to single-zone scenarios, can instead be explained
by a two-component model.Comment: Accepted for publication in Astronomy & Astrophysic
The variability patterns of the TeV blazar PG 1553+113 from a decade of MAGIC and multi-band observations
PG 1553+113 is one of the few blazars with a convincing quasi-periodic
emission in the gamma-ray band. The source is also a very high-energy (VHE;
>100 GeV) gamma-ray emitter. To better understand its properties and identify
the underlying physical processes driving its variability, the MAGIC
Collaboration initiated a multiyear, multiwavelength monitoring campaign in
2015 involving the OVRO 40-m and Medicina radio telescopes, REM, KVA, and the
MAGIC telescopes, Swift and Fermi satellites, and the WEBT network. The
analysis presented in this paper uses data until 2017 and focuses on the
characterization of the variability. The gamma-ray data show a (hint of a)
periodic signal compatible with literature, but the X-ray and VHE gamma-ray
data do not show statistical evidence for a periodic signal. In other bands,
the data are compatible with the gamma-ray period, but with a relatively high
p-value. The complex connection between the low and high-energy emission and
the non-monochromatic modulation and changes in flux suggests that a simple
one-zone model is unable to explain all the variability. Instead, a model
including a periodic component along with multiple emission zones is required.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society. 19 pages, 9 figures. Corresponding authors: Elisa Prandini, Antonio
Stamerra, Talvikki Hovatt
- …