3,363 research outputs found

    Periodic Oscillations of Josephson-Vortex Flow Resistance in Oxygen-Deficient Y1Ba2Cu3Ox

    Full text link
    We measured the Josephson vortex flow resistance as a function of magnetic field applied parallel to the ab-planes using annealed Y1Ba2Cu3Ox intrinsic Josephson junctions having high anisotropy (around 40) by oxygen content reduction. Periodic oscillations were observed in magnetic fields above 45-58 kOe, corresponding to dense-dilute boundary for Josephson vortex lattice. The observed period of oscillations, agrees well with the increase of one fluxon per two junctions (HpH_{p}\textit{=Φ\Phi }0_{0}\textit{/2Ls}), may correspond to formation of a triangular lattice of Josephson vortices as has been reported by Ooi et al. for highly anisotropic (larger than 200) Bi-2212 intrinsic Josephson junctions.Comment: 5 pages, 4 figure

    Accelerating Universes in String Theory via Field Redefinition

    Full text link
    We study cosmological solutions in the effective heterotic string theory with α\alpha'-correction terms in string frame. It is pointed out that the effective theory has an ambiguity via field redefinition and we analyze generalized effective theories due to this ambiguity. We restrict our analysis to the effective theories which give equations of motion of second order in the derivatives, just as "Galileon" field theory. This class of effective actions contains two free coupling constants. We find de Sitter solutions as well as the power-law expanding universes in our four-dimensional Einstein frame. The accelerated expanding universes are always the attractors in the present dynamical system.Comment: 22 pages, 3 figures, some additional formulae adde

    Effect of Void Network on CMB Anisotropy

    Full text link
    We study the effect of a void network on the CMB anisotropy in the Einstein-de Sitter background using Thompson &Vishniac's model. We consider comprehensively the Sacks-Wolfe effect, the Rees-Sciama effect and the gravitational lensing effect. Our analysis includes the model of primordial voids existing at recombination, which is realized in some inflationary models associated with a first-order phase transition. If there exist primordial voids whose comoving radius is larger than 10h1\sim10h^{-1}Mpc at recombination, not only the Sachs-Wolfe effect but also the Rees-Sciama effect is appreciable even for multipoles l\lsim1000 of the anisotropy spectrum. The gravitational lensing effect, on the other hand, slightly smoothes the primary anisotropy; quantitatively, our results for the void model are similar to the previous results for a CDM model. All the effects, together, would give some constraints on the configuration or origin of voids with high-resolution data of the CMB anisotropy.Comment: 23 pages, latex, 12 eps figures, some calculations and discussions are added, to appear in ApJ 510 (1999

    Effective String Theory of Vortices and Regge Trajectories

    Get PDF
    Starting from a field theory containing classical vortex solutions, we obtain an effective string theory of these vortices as a path integral over the two transverse degrees of freedom of the string. We carry out a semiclassical expansion of this effective theory, and use it to obtain corrections to Regge trajectories due to string fluctuations.Comment: 27 pages, revtex, 3 figures, corrected an error with the cutoff in appendix E (was previously D), added more discussion of Fig. 3, moved some material in section 9 to a new appendi

    Pure nematic state in iron-based superconductor

    Full text link
    Lattice and electronic states of thin FeSe films on LaAlO3_3 substrates are investigated in the vicinity of the nematic phase transition. No evidence of structural phase transition is found by x-ray diffraction below T90T^\ast \sim 90 K, while results obtained from resistivity measurement and angle-resolved photoemission spectroscopy clearly show the appearance of a nematic state. These results indicate formation of a pure nematic state in the iron-based superconductor and provide conclusive evidence that the nematic state originates from the electronic degrees of freedom. This pure nematicity in the thin film implies difference in the electron-lattice interaction from bulk FeSe crystals. FeSe films provide valuable playgrounds for observing the pure response of "bare" electron systems free from the electron-lattice interaction, and should make important contribution to investigate nematicity and its relationship with superconductivity

    Normal-state conductivity in underdoped La_{2-x}Sr_xCuO_4 thin films: Search for nonlinear effects related to collective stripe motion

    Full text link
    We report a detailed study of the electric-field dependence of the normal-state conductivity in La_{2-x}Sr_xCuO_4 thin films for two concentrations of doped holes, x=0.01 and 0.06, where formation of diagonal and vertical charged stripes was recently suggested. In order to elucidate whether high electric fields are capable of depinning the charged stripes and inducing their collective motion, we have measured current-voltage characteristics for various orientations of the electric field with respect to the crystallographic axes. However, even for the highest possible fields (~1000 V/cm for x=0.01 and \~300 V/cm for x=0.06) we observed no non-linear-conductivity features except for those related to the conventional Joule heating of the films. Our analysis indicates that Joule heating, rather than collective electron motion, may also be responsible for the non-linear conductivity observed in some other 2D transition-metal oxides as well. We discuss that a possible reason why moderate electric fields fail to induce a collective stripe motion in layered oxides is that fairly flexible and compressible charged stripes can adjust themselves to the crystal lattice and individual impurities, which makes their pinning much stronger than in the case of conventional rigid charge-density waves.Comment: 10 pages, 10 figures, accepted for publication in Phys. Rev.

    Numerical Evolution of General Relativistic Voids

    Full text link
    In this paper, we study the evolution of a relativistic, superhorizon-sized void embedded in a Friedmann-Robertson-Walker universe. We numerically solve the spherically symmetric general relativistic equations in comoving, synchronous coordinates. Initially, the fluid inside the void is taken to be homogeneous and nonexpanding. In a radiation- dominated universe, we find that radiation diffuses into the void at approximately the speed of light as a strong shock---the void collapses. We also find the surprising result that the cosmic collapse time (the 1st1^{\rm st}-crossing time) is much smaller than previously thought, because it depends not only on the radius of the void, but also on the ratio of the temperature inside the void to that outside. If the ratio of the initial void radius to the outside Hubble radius is less than the ratio of the outside temperature to that inside, then the collapse occurs in less than the outside Hubble time. Thus, superhorizon-sized relativistic void may thermalize and homogenize relatively quickly. These new simulations revise the current picture of superhorizon-sized void evolution after first-order inflation.Comment: 37 pages plus 12 figures (upon request-- [email protected]) LaTeX, FNAL-PUB-93/005-

    Clumps into Voids

    Get PDF
    We consider a spherically symmetric distribution of dust and show that it is possible, under general physically reasonable conditions, for an overdensity to evolve to an underdensity (and vice versa). We find the conditions under which this occurs and illustrate it on a class of regular Lemaitre-Tolman-Bondi solutions. The existence of this phenomenon, if verified, would have the result that the topology of density contours, assumed fixed in standard structure formation theories, would have to change and that luminous matter would not trace the dark matter distribution so well.Comment: LaTeX, 17 pages, 4 figures. Submitted to GRG 20/4/200
    corecore