5 research outputs found

    Realistic fast quantum gates with hot trapped ions

    Get PDF
    The "pushing gate" proposed by Cirac and Zoller in 2000 for quantum logic in ion traps is discussed, in which a force is used to give a controlled push to a pair of trapped ions and thus realize a phase gate. The original proposal had a weakness in that it involved a hidden extreme sensitivity to the size of the force. Also, the physical origin of this force was not fully addressed. Here, we discuss the sensitivity and present a way to avoid it by choosing the spatial form of the pushing force in an optimal way. We also analyse the effect of imperfections in a pair of pi pulses which are used to implement a "spin-echo" to cancel correlated errors. We present a physical model for the force, namely the dipole force, and discuss the impact of unwanted photon scattering, and of finite temperature of the ions. The main effect of the temperature is to blur the phase of the gate owing to the ions exploring a range of values of the force. When the distance scale of the force profile is smaller than the ion separation, this effect is more important than the high-order terms in the Coulomb repulsion which were originally discussed. Overall, we find that whereas the "pushing gate" is not as resistant to imperfections as was supposed, it remains a significant candidate for ion trap quantum computing since it does not require ground state cooling, and in some cases it does not require the Lamb-Dicke limit, while the gate rate is fast, close to (rather than small compared to) the trap vibrational frequency.Comment: 24 pages, 9 figures, revtex

    Quantum computation with ions in microscopic traps

    No full text
    We discuss a possible experimental realization of fast quantum gates with high fidelity with ions confined in microscopic traps. The original proposal of this physical system for quantum computation comes from Cirac and Zoller (Nature 404, 579 (2000)). In this paper we analyse a sensitivity of the ion-trap quantum gate on various experimental parameters which was omitted in the original proposal. We address imprecision of laser pulses, impact of photon scattering, nonzero temperature effects and influence of laser intensity fluctuations on the total fidelity of the two-qubit phase gate. (C) 2003 Elsevier Ltd. All rights reserved

    Fast quantum logic by selective displacement of hot trapped ions

    No full text
    A report on the fast quantum logic by selective displacement of hot trapped ions was presented in the article. The effect of imperfections in a pair of π pulses which are used to implement a 'spin echo' to cancel correlated errors was also analyzed. It was found that whereas the pushing gate is not as resistant to imperfection as was supposed, it remains a significant candidate for ion trap quantum computing since it does not require ground state cooling
    corecore