2,029 research outputs found
Two-Hop Routing with Traffic-Differentiation for QoS Guarantee in Wireless Sensor Networks
This paper proposes a Traffic-Differentiated Two-Hop Routing protocol for
Quality of Service (QoS) in Wireless Sensor Networks (WSNs). It targets WSN
applications having different types of data traffic with several priorities.
The protocol achieves to increase Packet Reception Ratio (PRR) and reduce
end-to-end delay while considering multi-queue priority policy, two-hop
neighborhood information, link reliability and power efficiency. The protocol
is modular and utilizes effective methods for estimating the link metrics.
Numerical results show that the proposed protocol is a feasible solution to
addresses QoS service differenti- ation for traffic with different priorities.Comment: 13 page
Quantum Mechanical Analysis of Channel Access Geometry and Series Resistance in Nanoscale Transistors
We apply a two-dimensional quantum mechanical simulation scheme to study the effect of channel access geometries on device performance. This simulation scheme solves the nonequilibrium Greenâs function equations self-consistently with Poissonâs equation and treats the effect of scattering using a simple approximation inspired by Bu Ìttiker. It is based on an expansion of the device Hamiltonian in coupled mode space. Simulation results are used to highlight quantum effects and discuss the importance of scattering when examining the transport properties of nanoscale transistors with differing channel access geometries. Additionally, an efficient domain decomposition scheme for evaluating the performance of nanoscale transistors is also presented. This article highlights the importance of scattering in understanding the performance of transistors with different channel access geometries
Generation of ultrashort electrical pulses in semiconductor waveguides
We report a novel device capable of generating ultrashort electrical pulses on a coplanar waveguide (CPW) by means of optical rectification. The device consists of a completely passive GaAs-based optical waveguide, which is velocity matched to a CPW line. Optical pulses are injected into the device and electrical pulses are collected at the output. Experimental results obtained in the laboratory show the potential of this device for high speed optical-to-electrical conversion
- âŠ