213 research outputs found

    Eradication of foot-and-mouth disease: a foot in mouth proposition

    Get PDF
    This article does not have an abstract

    Severe acute respiratory syndrome (SARS): an old virus jumping into a new host or a new creation?

    Get PDF
    This article does not have an abstract

    Isolation and properties of a lectin from the seeds of Mimosa invisa L.

    Get PDF
    A lectin has been purified from the seeds ofMimosa invisa L. by gel filtration and preparative Polyacrylamide gel electrophoresis. The purified lectin was homogeneous as judged by analytical Polyacrylamide gel electrophoresis, immunodiffusion and Immunoelectrophoresis. The apparent molecular weight is 100,000; the protein is a tetramer with two types of subunits (molecular weight 35,000 and 15,000). The lectin is a glycoprotein with approximately 21% carbohydrate and interacts with Sephadex and concanavalin A-Sepharose. It agglutinates erthrocytes non-specifically, does not agglutinate leucocytes and is not mitogenic, agglutinates Mimosa-nodulatingRhizobium and is a panagglutinin; the agglutination is not inhibited by several simple sugars. It is thermo-stable and has no metal ions

    Host factor Ebp1 inhibits rinderpest virus transcription in vivo

    Get PDF
    ErbB3 binding protein Ebp1 has been shown to downregulate ErbB3 receptor-mediated signaling to inhibit cell proliferation. Rinderpest virus belongs to the family Paramyxoviridae and is characterized by the presence of a non-segmented negative-sense RNA genome. In this work, we show that rinderpest virus infection of Vero cells leads to the down-regulation of the host factor Ebp1, at both the mRNA and protein levels. Ebp1 protein has been shown to co-localize with viral inclusion bodies in infected cells, and it is packaged into virions, presumably through its interaction with the N protein or the N-RNA itself. Overexpression of Ebp1 inhibits viral transcription and multiplication in infected cells, suggesting that a mutual antagonism operates between host factor Ebp1 and the virus

    Protein synthesis in Mycobacterium tuberculosis H37Rv and the effect of streptomycin in Streptomycin-Susceptible and -resistant Strains

    Get PDF
    An efficient in vitro amino acid-incorporating system from Mycobacterium tuberculosis H37Rv was standardized. Ribonucleic acid (RNA) isolated from phage-infected M. smegmatis cells served as natural messenger RNA and directed the incorporation of 14C-amino acids into protein. The effects of various antitubercular drugs and "known inhibitors" of protein synthesis on amino acid incorporation were studied. Antibiotics like chloramphenicol and tetracycline inhibited mycobacterial protein synthesis, though they failed to prevent the growth of the organism. This failure was shown to be due to the impermeability of mycobacteria to these drugs by use of "membrane-active" agents along with the antibiotics in growth inhibition studies. Several independent streptomycin-resistant mutants of M. tuberculosis H37Rv were isolated. Streptomycin inhibited the incorporation of 14C-amino acids into proteins by whole cells of a streptomycin-susceptible strain by more than 90%, whereas very little or no inhibition was observed in either high-level or low-level streptomycin-resistant strains. In vitro, streptomycin was an effective inhibitor of susceptible strains, whereas in streptomycin-resistant strains the concentration of streptomycin at which half-maximal inhibition was produced varied according to the resistance of whole cells, and there was a correlation between the two. In one low-level streptomycin-resistant mutant, the in vitro amino acid-incorporating system was as sensitive to various concentrations of streptomycin as the parental type, and a possible involvement of a membrane site in the development of low-level resistance was indicated. Streptomycin susceptibility and high-level resistance were shown to be ribosomal in nature

    Non-segmented negative sense RNA viruses as vectors for vaccine development

    Get PDF
    This article intends to cover two aspects of non-segmented negative sense RNA viruses. In the initial section, the strategy employed by these viruses to replicate their genomes is discussed. This would help in understanding the later section in which the use of these viruses as vaccine vectors has been discussed. For the description of the replication strategy which encompasses virus genome transcription and genome replication carried out by the same RNA dependent RNA polymerase complex, a member of the prototype rhabdovirus family-Chandipura virus has been chosen as an example to illustrate the complex nature of the two processes and their regulation. In the discussion on these viruses serving as vectors for carrying vaccine antigen genes, emphasis has been laid on describing the progress made in using the attenuated viruses as vectors and a description of the systems in which the efficiency of immune responses has been tested

    Leader RNA of Rinderpest virus binds specifically with cellular La protein: a possible role in virus replication

    Get PDF
    Rinderpest virus (RPV) is an important member of the Morbillivirus genus in the family Paramyxoviridae and employs a similar strategy for transcription and replication of its genome as that of other negative sense RNA viruses. Cellular proteins have earlier been shown to stimulate viral RNA synthesis by isolated nucleocapsids from purified virus or from virus-infected cells. In the present work, we show that plus sense leader RNA of RPV, transcribed from 3' end of genomic RNA, specifically interacts with cellular La protein employing gel mobility shift assay as well as UV cross-linking of leader RNA with La protein. The leader RNA synthesized in virus-infected cells was shown to interact with La protein by immunoprecipitation of leader RNA bound to La protein and detecting the leader RNA in the immunoprecipitate by Northern hybridization with labeled antisense leader RNA. Employing a minireplicon system, we demonstrate that transiently expressed La protein enhances the replication/transcription of the RPV minigenome in cells. Sub-cellular immunolocalization shows that La protein is redistributed from nucleus to the cytoplasm upon infection. Our results strongly suggest that La protein may be involved in regulation of Rinderpest virus replication

    Effect of phytohormones on nuclear RNA synthesis in germinating seeds of Trigonella foenumgraeceum and its callus

    Get PDF
    Treatment of Trigonella foenumgraeceum (fenugreek) seedlings with naphthalene acetic acid plus gibberellic acid enhanced the RNA synthesising capacity of nuclei isolated from the hypocotyl and cotyledonary regions. This increase was more pronounced in the nuclei from the hypocotyl region than from the cotyledonary region. In vitro addition of these phytohormones did not stimulate RNA synthesis by nuclei. The RNA synthesis by mitochondria was not affected by preincubating the seedlings with the hormones. The nuclei isolated from callus cultures of fenugreek hypocotyl treated with the hormone also showed increased RNA synthesis

    RNA polymerase activity in isolated nuclei of Nicotiana sanderae callus: characteristics and modulation during differentiation

    Get PDF
    Isolated nuclei from differentiating cultures of Nicotiana sanderae showed increased levels of RNA polymerase activity as compared to the nuclei from callus cultures. The RNA synthetic activity was dependent on nucleotide triphosphates and Mg2+ and was destroyed by RNase. Maximum activity was obtained in the presence of 50 mM (NH4)2 SO4 and α-amanitin inhibited 40% and 55% of the activity in the nuclei from callus and differentiating tissue respectively. The nuclei from differentiating tissue elicited a 3-fold increase in RNA polymerase I and a 4-fold augmentation in RNA polymerase II activities
    • …
    corecore